In this paper a filtering method for non-Gaussian linear systems is adopted to face the problem of the target tracking in the presence of the glint noise. In particular, we extend the quadratic filtering method with virtual measurements to the three-dimensional case of the target tracking problem. Moreover, we present extensive numerical simulation by comparing our method with several filtering algorithms used in the case of heavy tailed noises. The latter numerical results confirm the effectiveness of the proposed approach.
Filtering of systems with heavy tailed noise: application to 3D target tracking with glint noise / Battilotti, Stefano; Cacace, Filippo; D'Angelo, Massimiliano; Della Corte, Emanuele; Germani, Alfredo. - (2022), pp. 254-259. ( 2022 American Control Conference, ACC 2022 Atlanta, GA (USA) ) [10.23919/ACC53348.2022.9867691].
Filtering of systems with heavy tailed noise: application to 3D target tracking with glint noise
Stefano Battilotti;Massimiliano d’Angelo
;Alfredo Germani
2022
Abstract
In this paper a filtering method for non-Gaussian linear systems is adopted to face the problem of the target tracking in the presence of the glint noise. In particular, we extend the quadratic filtering method with virtual measurements to the three-dimensional case of the target tracking problem. Moreover, we present extensive numerical simulation by comparing our method with several filtering algorithms used in the case of heavy tailed noises. The latter numerical results confirm the effectiveness of the proposed approach.| File | Dimensione | Formato | |
|---|---|---|---|
|
Battilotti_postprint_Filtering-of-systems_2022.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
546.76 kB
Formato
Adobe PDF
|
546.76 kB | Adobe PDF | |
|
Battilotti_Filtering-of-systems_2022.pdf
solo gestori archivio
Note: articolo principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
593.73 kB
Formato
Adobe PDF
|
593.73 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


