Photovoltaic (PV) soiling profiles exhibit a sawtooth shape, where cleaning events and soiling deposition periods alternate. Generally, the rate at which soiling accumulates is assumed to be constant within each deposition period. In reality, changes in rates can occur because of sudden variations in climatic conditions, e.g., dust storms or prolonged periods of rain. The existing models used to extract the soiling profile from the PV performance data might fail to capture the change points and occasionally estimate incorrect soiling profiles. This work analyzes how the introduction of change points can be beneficial for soiling extraction. Data from nine soiling stations and a 1-MW site were analyzed by using piecewise regression and three change point detection algorithms. The results showed that accounting for change points can provide significant benefits to the modeling of soiling even if not all the change point algorithms return the same improvements. Considering change points in historical trends is found to be particularly important for studies aiming to optimize cleaning schedules.

Improved PV soiling extraction through the detection of cleanings and change points / Micheli, L.; Theristis, M.; Livera, A.; Stein, J. S.; Georghiou, G. E.; Muller, M.; Almonacid, F.; Fernandez, E. F.. - In: IEEE JOURNAL OF PHOTOVOLTAICS. - ISSN 2156-3381. - 11:2(2021), pp. 519-526. [10.1109/JPHOTOV.2020.3043104]

Improved PV soiling extraction through the detection of cleanings and change points

Micheli L.
;
2021

Abstract

Photovoltaic (PV) soiling profiles exhibit a sawtooth shape, where cleaning events and soiling deposition periods alternate. Generally, the rate at which soiling accumulates is assumed to be constant within each deposition period. In reality, changes in rates can occur because of sudden variations in climatic conditions, e.g., dust storms or prolonged periods of rain. The existing models used to extract the soiling profile from the PV performance data might fail to capture the change points and occasionally estimate incorrect soiling profiles. This work analyzes how the introduction of change points can be beneficial for soiling extraction. Data from nine soiling stations and a 1-MW site were analyzed by using piecewise regression and three change point detection algorithms. The results showed that accounting for change points can provide significant benefits to the modeling of soiling even if not all the change point algorithms return the same improvements. Considering change points in historical trends is found to be particularly important for studies aiming to optimize cleaning schedules.
2021
monitoring; photovoltaic (PV) systems; regression analysis; soiling; time-series analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Improved PV soiling extraction through the detection of cleanings and change points / Micheli, L.; Theristis, M.; Livera, A.; Stein, J. S.; Georghiou, G. E.; Muller, M.; Almonacid, F.; Fernandez, E. F.. - In: IEEE JOURNAL OF PHOTOVOLTAICS. - ISSN 2156-3381. - 11:2(2021), pp. 519-526. [10.1109/JPHOTOV.2020.3043104]
File allegati a questo prodotto
File Dimensione Formato  
Micheli_Improved PV_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF   Contatta l'autore
Micheli_Improved PV_post-print_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1625157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact