High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.

Towards complete and error-free genome assemblies of all vertebrate species / Rhie, A.; Mccarthy, S. A.; Fedrigo, O.; Damas, J.; Formenti, G.; Koren, S.; Uliano-Silva, M.; Chow, W.; Fungtammasan, A.; Kim, J.; Lee, C.; Ko, B. J.; Chaisson, M.; Gedman, G. L.; Cantin, L. J.; Thibaud-Nissen, F.; Haggerty, L.; Bista, I.; Smith, M.; Haase, B.; Mountcastle, J.; Winkler, S.; Paez, S.; Howard, J.; Vernes, S. C.; Lama, T. M.; Grutzner, F.; Warren, W. C.; Balakrishnan, C. N.; Burt, D.; George, J. M.; Biegler, M. T.; Iorns, D.; Digby, A.; Eason, D.; Robertson, B.; Edwards, T.; Wilkinson, M.; Turner, G.; Meyer, A.; Kautt, A. F.; Franchini, P.; Detrich, H. W.; Svardal, H.; Wagner, M.; Naylor, G. J. P.; Pippel, M.; Malinsky, M.; Mooney, M.; Simbirsky, M.; Hannigan, B. T.; Pesout, T.; Houck, M.; Misuraca, A.; Kingan, S. B.; Hall, R.; Kronenberg, Z.; Sovic, I.; Dunn, C.; Ning, Z.; Hastie, A.; Lee, J.; Selvaraj, S.; Green, R. E.; Putnam, N. H.; Gut, I.; Ghurye, J.; Garrison, E.; Sims, Y.; Collins, J.; Pelan, S.; Torrance, J.; Tracey, A.; Wood, J.; Dagnew, R. E.; Guan, D.; London, S. E.; Clayton, D. F.; Mello, C. V.; Friedrich, S. R.; Lovell, P. V.; Osipova, E.; Al-Ajli, F. O.; Secomandi, S.; Kim, H.; Theofanopoulou, C.; Hiller, M.; Zhou, Y.; Harris, R. S.; Makova, K. D.; Medvedev, P.; Hoffman, J.; Masterson, P.; Clark, K.; Martin, F.; Howe, K.; Flicek, P.; Walenz, B. P.; Kwak, W.; Clawson, H.; Diekhans, M.; Nassar, L.; Paten, B.; Kraus, R. H. S.; Crawford, A. J.; Gilbert, M. T. P.; Zhang, G.; Venkatesh, B.; Murphy, R. W.; Koepfli, K. -P.; Shapiro, B.; Johnson, W. E.; Di Palma, F.; Marques-Bonet, T.; Teeling, E. C.; Warnow, T.; Graves, J. M.; Ryder, O. A.; Haussler, D.; O'Brien, S. J.; Korlach, J.; Lewin, H. A.; Howe, K.; Myers, E. W.; Durbin, R.; Phillippy, A. M.; Jarvis, E. D.. - In: NATURE. - ISSN 0028-0836. - 592:7856(2021), pp. 737-746. [10.1038/s41586-021-03451-0]

Towards complete and error-free genome assemblies of all vertebrate species

Franchini P.;
2021

Abstract

High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
2021
Animals; Birds; Gene Library; Genome Size; Genome, Mitochondrial; Genomics; Haplotypes; High-Throughput Nucleotide Sequencing; Molecular Sequence Annotation; Sequence Alignment; Sequence Analysis, DNA; Sex Chromosomes; Vertebrates; Genome
01 Pubblicazione su rivista::01a Articolo in rivista
Towards complete and error-free genome assemblies of all vertebrate species / Rhie, A.; Mccarthy, S. A.; Fedrigo, O.; Damas, J.; Formenti, G.; Koren, S.; Uliano-Silva, M.; Chow, W.; Fungtammasan, A.; Kim, J.; Lee, C.; Ko, B. J.; Chaisson, M.; Gedman, G. L.; Cantin, L. J.; Thibaud-Nissen, F.; Haggerty, L.; Bista, I.; Smith, M.; Haase, B.; Mountcastle, J.; Winkler, S.; Paez, S.; Howard, J.; Vernes, S. C.; Lama, T. M.; Grutzner, F.; Warren, W. C.; Balakrishnan, C. N.; Burt, D.; George, J. M.; Biegler, M. T.; Iorns, D.; Digby, A.; Eason, D.; Robertson, B.; Edwards, T.; Wilkinson, M.; Turner, G.; Meyer, A.; Kautt, A. F.; Franchini, P.; Detrich, H. W.; Svardal, H.; Wagner, M.; Naylor, G. J. P.; Pippel, M.; Malinsky, M.; Mooney, M.; Simbirsky, M.; Hannigan, B. T.; Pesout, T.; Houck, M.; Misuraca, A.; Kingan, S. B.; Hall, R.; Kronenberg, Z.; Sovic, I.; Dunn, C.; Ning, Z.; Hastie, A.; Lee, J.; Selvaraj, S.; Green, R. E.; Putnam, N. H.; Gut, I.; Ghurye, J.; Garrison, E.; Sims, Y.; Collins, J.; Pelan, S.; Torrance, J.; Tracey, A.; Wood, J.; Dagnew, R. E.; Guan, D.; London, S. E.; Clayton, D. F.; Mello, C. V.; Friedrich, S. R.; Lovell, P. V.; Osipova, E.; Al-Ajli, F. O.; Secomandi, S.; Kim, H.; Theofanopoulou, C.; Hiller, M.; Zhou, Y.; Harris, R. S.; Makova, K. D.; Medvedev, P.; Hoffman, J.; Masterson, P.; Clark, K.; Martin, F.; Howe, K.; Flicek, P.; Walenz, B. P.; Kwak, W.; Clawson, H.; Diekhans, M.; Nassar, L.; Paten, B.; Kraus, R. H. S.; Crawford, A. J.; Gilbert, M. T. P.; Zhang, G.; Venkatesh, B.; Murphy, R. W.; Koepfli, K. -P.; Shapiro, B.; Johnson, W. E.; Di Palma, F.; Marques-Bonet, T.; Teeling, E. C.; Warnow, T.; Graves, J. M.; Ryder, O. A.; Haussler, D.; O'Brien, S. J.; Korlach, J.; Lewin, H. A.; Howe, K.; Myers, E. W.; Durbin, R.; Phillippy, A. M.; Jarvis, E. D.. - In: NATURE. - ISSN 0028-0836. - 592:7856(2021), pp. 737-746. [10.1038/s41586-021-03451-0]
File allegati a questo prodotto
File Dimensione Formato  
Rhie_Towards_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 7.7 MB
Formato Adobe PDF
7.7 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1624369
Citazioni
  • ???jsp.display-item.citation.pmc??? 554
  • Scopus 1069
  • ???jsp.display-item.citation.isi??? 553
social impact