Two-dimensional indium selenide (InSe) has attracted extensive attention recently due to its record-high charge carrier mobility and photoresponsivity in the fields of electronics and optoelectronics. Nevertheless, the mechanical properties of this material in the ultra-thin regime have not been investigated yet. Here, we present our efforts to determine the Young's modulus of thin InSe (∼1-2 layers to ∼34 layers) flakes experimentally by using a buckling-based methodology. We find that the Young's modulus has a value of 23.1 ± 5.2 GPa, one of the lowest values reported to date for crystalline two-dimensional materials. This superior flexibility can be very attractive for different applications, such as strain engineering and flexible electronics.
InSe: A two-dimensional semiconductor with superior flexibility / Zhao, Q.; Frisenda, R.; Wang, T.; Castellanos-Gomez, A.. - In: NANOSCALE. - ISSN 2040-3364. - 11:20(2019), pp. 9845-9850. [10.1039/c9nr02172h]
InSe: A two-dimensional semiconductor with superior flexibility
Frisenda R.
;
2019
Abstract
Two-dimensional indium selenide (InSe) has attracted extensive attention recently due to its record-high charge carrier mobility and photoresponsivity in the fields of electronics and optoelectronics. Nevertheless, the mechanical properties of this material in the ultra-thin regime have not been investigated yet. Here, we present our efforts to determine the Young's modulus of thin InSe (∼1-2 layers to ∼34 layers) flakes experimentally by using a buckling-based methodology. We find that the Young's modulus has a value of 23.1 ± 5.2 GPa, one of the lowest values reported to date for crystalline two-dimensional materials. This superior flexibility can be very attractive for different applications, such as strain engineering and flexible electronics.File | Dimensione | Formato | |
---|---|---|---|
Zhao_InSe: a two-dimensional_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.