This article deals with an innovative wireless charging system for an implanted capsule robot. The transmitting coil is given by a combination of a Helmholtz coil and a birdcage coil. This coil configuration generates a magnetic field with all nonzero field components for any location within the human torso. Therefore, a single axis receiving coil wound around a cylindrical shaped ferrite core is able to receive a significant quantity of electrical energy for any capsule orientation and position. Design guidelines are provided and illustrative examples are given. Assuming a capsule of 2 cm length and 1 cm diameter we can transfer at least 1 W to the load with a minimum power transfer efficiency larger than 10% without considering electronic losses. Finally, compliance with electromagnetic field safety limits is assessed by a numerical dosimetric analysis.
Innovative wireless charging system for implantable capsule robots / Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M.. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - 63:5(2021), pp. 1726-1734. [10.1109/TEMC.2021.3078846]
Innovative wireless charging system for implantable capsule robots
Campi T.;Cruciani S.;Maradei F.;
2021
Abstract
This article deals with an innovative wireless charging system for an implanted capsule robot. The transmitting coil is given by a combination of a Helmholtz coil and a birdcage coil. This coil configuration generates a magnetic field with all nonzero field components for any location within the human torso. Therefore, a single axis receiving coil wound around a cylindrical shaped ferrite core is able to receive a significant quantity of electrical energy for any capsule orientation and position. Design guidelines are provided and illustrative examples are given. Assuming a capsule of 2 cm length and 1 cm diameter we can transfer at least 1 W to the load with a minimum power transfer efficiency larger than 10% without considering electronic losses. Finally, compliance with electromagnetic field safety limits is assessed by a numerical dosimetric analysis.File | Dimensione | Formato | |
---|---|---|---|
Campi_Innovative Wireless_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.01 MB
Formato
Adobe PDF
|
3.01 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.