Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule. Theoretical calculations confirm the occurrence of constructive and destructive interference in the para- and meta-OPV3 molecules respectively, which arises from the phase difference of the transmission coefficients through the molecular orbitals.
Quantum interference effects at room temperature in OPV-based single-molecule junctions / Arroyo, C. R.; Frisenda, R.; Moth-Poulsen, K.; Seldenthuis, J. S.; Bjornholm, T.; van der Zant, H. S. J.. - In: NANOSCALE RESEARCH LETTERS. - ISSN 1931-7573. - 8:1(2013). [10.1186/1556-276X-8-234]
Quantum interference effects at room temperature in OPV-based single-molecule junctions
Frisenda R.;
2013
Abstract
Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule. Theoretical calculations confirm the occurrence of constructive and destructive interference in the para- and meta-OPV3 molecules respectively, which arises from the phase difference of the transmission coefficients through the molecular orbitals.File | Dimensione | Formato | |
---|---|---|---|
Arroyo_Quantum interference_2013.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.