This article aims to explore the potential of current approaches for quantum image classification in the context of remote sensing. After a brief outline of quantum computers and an analysis of the current bottlenecks, it shows for the first time experiments with quantum neural networks on a reference Earth observation (EO) dataset: EuroSAT. Moreover, it establishes the proof of concept of quantum computing for EO: the models trained and run on a quantum simulator are on par with classical ones. We make the open-source code available for further developments.
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing / Zaidenberg, D. A.; Sebastianelli, A.; Spiller, D.; Le Saux, B.; Ullo, S. L.. - 2021-:(2021), pp. 5680-5683. (Intervento presentato al convegno 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 tenutosi a VIRTUAL) [10.1109/IGARSS47720.2021.9553133].
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing
Spiller D.
Methodology
;
2021
Abstract
This article aims to explore the potential of current approaches for quantum image classification in the context of remote sensing. After a brief outline of quantum computers and an analysis of the current bottlenecks, it shows for the first time experiments with quantum neural networks on a reference Earth observation (EO) dataset: EuroSAT. Moreover, it establishes the proof of concept of quantum computing for EO: the models trained and run on a quantum simulator are on par with classical ones. We make the open-source code available for further developments.File | Dimensione | Formato | |
---|---|---|---|
Zaidenberg_Advantages_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.