This article aims to explore the potential of current approaches for quantum image classification in the context of remote sensing. After a brief outline of quantum computers and an analysis of the current bottlenecks, it shows for the first time experiments with quantum neural networks on a reference Earth observation (EO) dataset: EuroSAT. Moreover, it establishes the proof of concept of quantum computing for EO: the models trained and run on a quantum simulator are on par with classical ones. We make the open-source code available for further developments.

Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing / Zaidenberg, D. A.; Sebastianelli, A.; Spiller, D.; Le Saux, B.; Ullo, S. L.. - 2021-:(2021), pp. 5680-5683. (Intervento presentato al convegno 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 tenutosi a VIRTUAL) [10.1109/IGARSS47720.2021.9553133].

Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing

Spiller D.
Methodology
;
2021

Abstract

This article aims to explore the potential of current approaches for quantum image classification in the context of remote sensing. After a brief outline of quantum computers and an analysis of the current bottlenecks, it shows for the first time experiments with quantum neural networks on a reference Earth observation (EO) dataset: EuroSAT. Moreover, it establishes the proof of concept of quantum computing for EO: the models trained and run on a quantum simulator are on par with classical ones. We make the open-source code available for further developments.
2021
2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
Earth observation; image classification; machine learning; quantum computing; quantum machine learning; remote sensing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing / Zaidenberg, D. A.; Sebastianelli, A.; Spiller, D.; Le Saux, B.; Ullo, S. L.. - 2021-:(2021), pp. 5680-5683. (Intervento presentato al convegno 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 tenutosi a VIRTUAL) [10.1109/IGARSS47720.2021.9553133].
File allegati a questo prodotto
File Dimensione Formato  
Zaidenberg_Advantages_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1623765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact