This paper presents FEFFuL, an architecture used to estimate the fitness value of a generated artifact in any Evolution Strategy (ES) system that would otherwise require human evaluation, i.e.: Interactive Evolutionary Computation (IEC) systems. By learning directly human preferences, the FEFFuL network aims to reduce user's fatigue to a minimum while also adapting to new emergent artifacts. We apply here FEFFuL in the context of evaluating generated structures in the popular game Minecraft.
FEFFuL: A Few-Examples Fitness Function Learner / Brandizzi, N.; Fanti, A.; Gallotta, R.; Napoli, C.. - 3092:(2021), pp. 75-79. (Intervento presentato al convegno 2021 Scholar's Yearly Symposium of Technology, Engineering and Mathematics, SYSTEM 2021 tenutosi a Catania; Italia).
FEFFuL: A Few-Examples Fitness Function Learner
Brandizzi N.
Investigation
;Fanti A.Software
;Napoli C.Supervision
2021
Abstract
This paper presents FEFFuL, an architecture used to estimate the fitness value of a generated artifact in any Evolution Strategy (ES) system that would otherwise require human evaluation, i.e.: Interactive Evolutionary Computation (IEC) systems. By learning directly human preferences, the FEFFuL network aims to reduce user's fatigue to a minimum while also adapting to new emergent artifacts. We apply here FEFFuL in the context of evaluating generated structures in the popular game Minecraft.File | Dimensione | Formato | |
---|---|---|---|
Brandizzi_FEFFuL_2021.pdf
accesso aperto
Note: http://ceur-ws.org/Vol-3092/p12.pdf
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.