In this paper we discuss some preliminary results related to a novel Bayesian nonparametric method for multiscale density estimation. Specifically, we extend the model by [1]—originally developed for compact sample spaces—to deal with data taking values in the whole real line R. By means of an infinitely-deep binary tree of kernels, we are able to construct a multiscale mixture model able to approximate densities with varying degrees of smoothness and local features. Sampling from the posterior distribution is available with a Markov Chain Monte Carlo method.

Bayesian multiscale mixture of Gaussian kernels for density estimation / Stefanucci, M.; Canale, A.. - (2019). (Intervento presentato al convegno SIS 2019 tenutosi a Milano).

Bayesian multiscale mixture of Gaussian kernels for density estimation

Stefanucci, M.
;
2019

Abstract

In this paper we discuss some preliminary results related to a novel Bayesian nonparametric method for multiscale density estimation. Specifically, we extend the model by [1]—originally developed for compact sample spaces—to deal with data taking values in the whole real line R. By means of an infinitely-deep binary tree of kernels, we are able to construct a multiscale mixture model able to approximate densities with varying degrees of smoothness and local features. Sampling from the posterior distribution is available with a Markov Chain Monte Carlo method.
2019
SIS 2019
Nonparametric Bayes; Multiscale models; Multiscale stick-breaking
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bayesian multiscale mixture of Gaussian kernels for density estimation / Stefanucci, M.; Canale, A.. - (2019). (Intervento presentato al convegno SIS 2019 tenutosi a Milano).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1623629
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact