We present new methods for the study of a class of generating functions introduced by the second author which carry some formal similarities with the Hurwitz zeta function. We prove functional identities which establish an explicit connection with certain deformations of the Carlitz logarithm introduced by M. Papanikolas and involve the Anderson-Thakur function and the Carlitz exponential function. They collect certain functional identities in families for a new class of L -functions introduced by the first author. This paper also deals with specializations at roots of unity of these generating functions, producing a link with Gauss-Thakur sums.

On certain generating functions in positive characteristic / Pellarin, F.; Perkins, R. B.. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 180:1(2016), pp. 123-144. [10.1007/s00605-016-0880-6]

On certain generating functions in positive characteristic

F. Pellarin
;
2016

Abstract

We present new methods for the study of a class of generating functions introduced by the second author which carry some formal similarities with the Hurwitz zeta function. We prove functional identities which establish an explicit connection with certain deformations of the Carlitz logarithm introduced by M. Papanikolas and involve the Anderson-Thakur function and the Carlitz exponential function. They collect certain functional identities in families for a new class of L -functions introduced by the first author. This paper also deals with specializations at roots of unity of these generating functions, producing a link with Gauss-Thakur sums.
2016
Positive characteristic; Carlitz module; Anderson generating functions; L-series;sSpecial values; periodic functions
01 Pubblicazione su rivista::01a Articolo in rivista
On certain generating functions in positive characteristic / Pellarin, F.; Perkins, R. B.. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 180:1(2016), pp. 123-144. [10.1007/s00605-016-0880-6]
File allegati a questo prodotto
File Dimensione Formato  
Pellarin_On-certain-generating_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 540.86 kB
Formato Adobe PDF
540.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1623068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact