Artificial intelligence (AI) systems, especially after the successful application of Convolutional Neural Networks, are revolutionizing modern medicine. Gastrointestinal Endoscopy has shown to be a fertile terrain for the development of AI systems aiming to aid endoscopists in various aspects of their daily activity. Lesion detection can be one of the two main aspects in which AI can increase diagnostic yield and abilities of endoscopists. In colonoscopy, it is well known that a substantial rate of missed neoplasia is still present, representing the major cause of interval cancer. In addition, an extremely high variability in adenoma detection rate, the main key quality indicator in colonoscopy, has been extensively reported. The other domain in which AI is believed to have a considerable impact on everyday clinical practice is lesion characterization and aid in "optical diagnosis". By predicting in vivo histology, such pathology costs may be averted by the implementation of two separate but synergistic strategies, namely the "leave-in-situ" strategy for < 5 mm hyperplastic lesions in the rectosigmoid tract, and "resect and discard" for the other diminutive lesions. In this opinion review we present current available evidence regarding the role of AI in improving lesions' detection and characterization during colonoscopy.

Artificial intelligence-aided colonoscopy: Recent developments and future perspectives / Antonelli, G; Gkolfakis, Paraskevas; Tziatzios, Georgios; Papanikolaou Ioannis, S.; Triantafyllou, Konstantinos; Hassan, Cesare. - In: WORLD JOURNAL OF GASTROENTEROLOGY. - ISSN 2219-2840. - 9:10(2021), pp. 4327-4337. [10.3748/wjg.v26.i47.7436]

Artificial intelligence-aided colonoscopy: Recent developments and future perspectives

Antonelli G;
2021

Abstract

Artificial intelligence (AI) systems, especially after the successful application of Convolutional Neural Networks, are revolutionizing modern medicine. Gastrointestinal Endoscopy has shown to be a fertile terrain for the development of AI systems aiming to aid endoscopists in various aspects of their daily activity. Lesion detection can be one of the two main aspects in which AI can increase diagnostic yield and abilities of endoscopists. In colonoscopy, it is well known that a substantial rate of missed neoplasia is still present, representing the major cause of interval cancer. In addition, an extremely high variability in adenoma detection rate, the main key quality indicator in colonoscopy, has been extensively reported. The other domain in which AI is believed to have a considerable impact on everyday clinical practice is lesion characterization and aid in "optical diagnosis". By predicting in vivo histology, such pathology costs may be averted by the implementation of two separate but synergistic strategies, namely the "leave-in-situ" strategy for < 5 mm hyperplastic lesions in the rectosigmoid tract, and "resect and discard" for the other diminutive lesions. In this opinion review we present current available evidence regarding the role of AI in improving lesions' detection and characterization during colonoscopy.
2021
01 Pubblicazione su rivista::01a Articolo in rivista
Artificial intelligence-aided colonoscopy: Recent developments and future perspectives / Antonelli, G; Gkolfakis, Paraskevas; Tziatzios, Georgios; Papanikolaou Ioannis, S.; Triantafyllou, Konstantinos; Hassan, Cesare. - In: WORLD JOURNAL OF GASTROENTEROLOGY. - ISSN 2219-2840. - 9:10(2021), pp. 4327-4337. [10.3748/wjg.v26.i47.7436]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1622777
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact