Monitoring freeze/thaw variations of the Earth surfaces is of paramount importance for the study of biogeochemical processes and climate change. At present, the use of passive sensors is well established, but, very recently, some studies demonstrated the potentialities of observations exploiting signals of opportunity. We propose here an advanced study to demonstrate the capability of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) to provide accurate and systematic information about the Earth-surface freeze/thaw state. Reflectivity values derived from TechDemoSat-1 (TDS-1) data are elaborated and compared against the Soil Moisture and Ocean Salinity (SMOS) freeze/thaw product, while state-of-The-Art land cover data are used to select GNSS-R data within an estimated footprint. In spite of the limited data availability due to sparse spatial coverage and calibration issues of TDS-1 observations, the proposed analysis demonstrates the possibility of monitoring the freeze/thaw state by analyzing the calibrated reflectivity, including also the possibility of detecting the transition state between frozen and thawed conditions across seasonal variations. This feature makes the design of next-generation GNSS-R satellite missions a unique opportunity to achieve high-resolution freeze/thaw monitoring with small and low-cost platforms.

Freeze-Thaw Detection over High-Latitude Regions by Means of GNSS-R Data / Rautiainen, K.; Comite, D.; Cohen, J.; Cardellach, E.; Unwin, M.; Pierdicca, N.. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - 60:(2022), pp. 1-13. [10.1109/TGRS.2021.3125315]

Freeze-Thaw Detection over High-Latitude Regions by Means of GNSS-R Data

Comite D.;Pierdicca N.
2022

Abstract

Monitoring freeze/thaw variations of the Earth surfaces is of paramount importance for the study of biogeochemical processes and climate change. At present, the use of passive sensors is well established, but, very recently, some studies demonstrated the potentialities of observations exploiting signals of opportunity. We propose here an advanced study to demonstrate the capability of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) to provide accurate and systematic information about the Earth-surface freeze/thaw state. Reflectivity values derived from TechDemoSat-1 (TDS-1) data are elaborated and compared against the Soil Moisture and Ocean Salinity (SMOS) freeze/thaw product, while state-of-The-Art land cover data are used to select GNSS-R data within an estimated footprint. In spite of the limited data availability due to sparse spatial coverage and calibration issues of TDS-1 observations, the proposed analysis demonstrates the possibility of monitoring the freeze/thaw state by analyzing the calibrated reflectivity, including also the possibility of detecting the transition state between frozen and thawed conditions across seasonal variations. This feature makes the design of next-generation GNSS-R satellite missions a unique opportunity to achieve high-resolution freeze/thaw monitoring with small and low-cost platforms.
2022
bistatic radar; freeze/thaw; Global Navigation Satellite System (GNSS) reflectometry; reflectivity; Soil Moisture and Ocean Salinity (SMOS) data; TechDemoSat-1 (TDS-1) mission
01 Pubblicazione su rivista::01a Articolo in rivista
Freeze-Thaw Detection over High-Latitude Regions by Means of GNSS-R Data / Rautiainen, K.; Comite, D.; Cohen, J.; Cardellach, E.; Unwin, M.; Pierdicca, N.. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - 60:(2022), pp. 1-13. [10.1109/TGRS.2021.3125315]
File allegati a questo prodotto
File Dimensione Formato  
Rautiainen_Freeze–Thaw_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.8 MB
Formato Adobe PDF
6.8 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1622425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact