We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ R. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L2-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.

ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS / Cammarota, Valentina; Paola Todino, Anna. - In: THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS. - ISSN 0094-9000. - (2022), pp. 41-62.

ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS

Valentina Cammarota
Primo
;
2022

Abstract

We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ R. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L2-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.
2022
critical points; random spherical harmonics; critical values
01 Pubblicazione su rivista::01a Articolo in rivista
ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS / Cammarota, Valentina; Paola Todino, Anna. - In: THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS. - ISSN 0094-9000. - (2022), pp. 41-62.
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_correlations_2022.pdf.pdf

solo gestori archivio

Note: Cammarota_correlations_2022.pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 321.97 kB
Formato Adobe PDF
321.97 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1621402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact