X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.

Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism / Franke, Martin; Daly, Adrian F.; Palmeira, Leonor; Tirosh, Amit; Stigliano, Antonio; Trifan, Eszter; Faucz, Fabio R.; Abboud, Dayana; Petrossians, Patrick; Tena, Juan J.; Vitali, Eleonora; Lania, Andrea G.; Gòmez-Skarmeta, José L.; Beckers, Albert; Stratakis, Constantine A.; Trivellin, Giampaolo. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - 109:4(2022), pp. 1-20. [10.1016/j.ajhg.2022.02.002]

Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism

Antonio Stigliano;
2022

Abstract

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.
2022
gpr101; tad; x-lag; enhancers; gigantism; growth; pituitary; tumor
01 Pubblicazione su rivista::01a Articolo in rivista
Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism / Franke, Martin; Daly, Adrian F.; Palmeira, Leonor; Tirosh, Amit; Stigliano, Antonio; Trifan, Eszter; Faucz, Fabio R.; Abboud, Dayana; Petrossians, Patrick; Tena, Juan J.; Vitali, Eleonora; Lania, Andrea G.; Gòmez-Skarmeta, José L.; Beckers, Albert; Stratakis, Constantine A.; Trivellin, Giampaolo. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - 109:4(2022), pp. 1-20. [10.1016/j.ajhg.2022.02.002]
File allegati a questo prodotto
File Dimensione Formato  
Duplications disrupt.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1621144
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact