PURPOSE: The aim of this ex vivo study was to assess the ability to remove oral biofilm by different combinations of mechanical and chemical treatments on smooth and rough titanium surfaces, as well as their impact on osteoconduction. MATERIALS AND METHODS: Forty-eight sandblasted acid-etched (SLA) and 48 machined titanium disks were contaminated with oral bacterial biofilm and exposed to the following treatments: (1) titanium brush (TB), (2) TB + 40% citric acid (CA), (3) TB + 5.25% sodium hypochlorite (NaOCl), (4) air polishing with glycine powder (AP), (5) AP + 40% CA, and (6) AP + 5.25% NaOCl. Residual bacteria and chemical contamination were assessed using viable bacterial count assay, scanning electron microscopy (SEM), and x-ray spectroscopy (XPS). Human primary osteoblast (hOB) adhesion and osteocalcin (OC) release were also evaluated. RESULTS: The microbiologic, SEM, and XPS analysis indicate a higher biofilm removal efficiency of combined mechanical-chemical treatments compared with exclusively mechanical approaches, especially on SLA surfaces. SEM analysis revealed significant alterations of surface microtopography on the disks treated with TB, while no changes were observed after AP treatment. OC release by hOBs was mainly decreased on disks treated with CA and NaOCl. CONCLUSION: The combination of mechanical and chemical treatments provides effective oral biofilm removal on both SLA and machined implant surfaces. NaOCl and CA may have a negative effect on osteoblasts cultured on SLA samples.

Efficacy of combined mechanical and chemical decontamination treatments on smooth and rough titanium surfaces and their effects on osteoconduction: an ex vivo study / Lollobrigida, M.; Lamazza, L.; Di Pietro, M.; Filardo, S.; Lopreiato, M.; Mariano, A.; Bozzuto, G.; Molinari, A.; Menchini, F.; Piattelli, A.; De Biase, A.. - In: INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS. - ISSN 1942-4434. - 37:1(2022), pp. 57-66. [10.11607/jomi.9105]

Efficacy of combined mechanical and chemical decontamination treatments on smooth and rough titanium surfaces and their effects on osteoconduction: an ex vivo study

Lollobrigida M.
Primo
;
Lamazza L.
Secondo
;
Di Pietro M.;Filardo S.;Lopreiato M.;Mariano A.;Bozzuto G.;Menchini F.;De Biase A.
Ultimo
2022

Abstract

PURPOSE: The aim of this ex vivo study was to assess the ability to remove oral biofilm by different combinations of mechanical and chemical treatments on smooth and rough titanium surfaces, as well as their impact on osteoconduction. MATERIALS AND METHODS: Forty-eight sandblasted acid-etched (SLA) and 48 machined titanium disks were contaminated with oral bacterial biofilm and exposed to the following treatments: (1) titanium brush (TB), (2) TB + 40% citric acid (CA), (3) TB + 5.25% sodium hypochlorite (NaOCl), (4) air polishing with glycine powder (AP), (5) AP + 40% CA, and (6) AP + 5.25% NaOCl. Residual bacteria and chemical contamination were assessed using viable bacterial count assay, scanning electron microscopy (SEM), and x-ray spectroscopy (XPS). Human primary osteoblast (hOB) adhesion and osteocalcin (OC) release were also evaluated. RESULTS: The microbiologic, SEM, and XPS analysis indicate a higher biofilm removal efficiency of combined mechanical-chemical treatments compared with exclusively mechanical approaches, especially on SLA surfaces. SEM analysis revealed significant alterations of surface microtopography on the disks treated with TB, while no changes were observed after AP treatment. OC release by hOBs was mainly decreased on disks treated with CA and NaOCl. CONCLUSION: The combination of mechanical and chemical treatments provides effective oral biofilm removal on both SLA and machined implant surfaces. NaOCl and CA may have a negative effect on osteoblasts cultured on SLA samples.
2022
biofilms; bone regeneration; humans; microscopy, electron, scanning; osteoblasts; surface properties; decontamination; titanium
01 Pubblicazione su rivista::01a Articolo in rivista
Efficacy of combined mechanical and chemical decontamination treatments on smooth and rough titanium surfaces and their effects on osteoconduction: an ex vivo study / Lollobrigida, M.; Lamazza, L.; Di Pietro, M.; Filardo, S.; Lopreiato, M.; Mariano, A.; Bozzuto, G.; Molinari, A.; Menchini, F.; Piattelli, A.; De Biase, A.. - In: INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS. - ISSN 1942-4434. - 37:1(2022), pp. 57-66. [10.11607/jomi.9105]
File allegati a questo prodotto
File Dimensione Formato  
Lollobrigida_Efficacy-of-combined_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 703.46 kB
Formato Adobe PDF
703.46 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1621045
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact