We present a new approach to searching for Continuous gravitational Waves (CWs) emitted by isolated rotating neutron stars, using the high parallel computing efficiency and computational power of modern Graphic Processing Units (GPUs). Specifically, in this paper the porting of one of the algorithms used to search for CW signals, the so-called FrequencyHough transform, on the TensorFlow framework, is described. The new code has been fully tested and its performance on GPUs has been compared to those in a CPU multicore system of the same class, showing a factor of 10 speed-up. This demonstrates that GPU programming with general purpose libraries (the those of the TensorFlow framework) of a high-level programming language can provide a significant improvement of the performance of data analysis, opening new perspectives on wide-parameter searches for CWs.

Continuous gravitational-wave data analysis with general purpose computing on graphic processing units / La Rosa, I.; Astone, P.; D'Antonio, S.; Frasca, S.; Leaci, P.; Miller, A. L.; Palomba, C.; Piccinni, O. J.; Pierini, L.; Regimbau, T.. - In: UNIVERSE. - ISSN 2218-1997. - 7:7(2021), pp. 1-12. [10.3390/universe7070218]

Continuous gravitational-wave data analysis with general purpose computing on graphic processing units

La Rosa I.;Astone P.;Frasca S.;Leaci P.;Miller A. L.;Palomba C.;Piccinni O. J.;Pierini L.;
2021

Abstract

We present a new approach to searching for Continuous gravitational Waves (CWs) emitted by isolated rotating neutron stars, using the high parallel computing efficiency and computational power of modern Graphic Processing Units (GPUs). Specifically, in this paper the porting of one of the algorithms used to search for CW signals, the so-called FrequencyHough transform, on the TensorFlow framework, is described. The new code has been fully tested and its performance on GPUs has been compared to those in a CPU multicore system of the same class, showing a factor of 10 speed-up. This demonstrates that GPU programming with general purpose libraries (the those of the TensorFlow framework) of a high-level programming language can provide a significant improvement of the performance of data analysis, opening new perspectives on wide-parameter searches for CWs.
2021
data analysis; frequency Hough; GPU; gravitational waves; Hough transform; tensor flow
01 Pubblicazione su rivista::01a Articolo in rivista
Continuous gravitational-wave data analysis with general purpose computing on graphic processing units / La Rosa, I.; Astone, P.; D'Antonio, S.; Frasca, S.; Leaci, P.; Miller, A. L.; Palomba, C.; Piccinni, O. J.; Pierini, L.; Regimbau, T.. - In: UNIVERSE. - ISSN 2218-1997. - 7:7(2021), pp. 1-12. [10.3390/universe7070218]
File allegati a questo prodotto
File Dimensione Formato  
LaRosa_Continuous_2021.pdf

accesso aperto

Note: Articolo rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 835.74 kB
Formato Adobe PDF
835.74 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1620657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact