The blazar TXS 0506+056 got into the spotlight of the astrophysical community in September 2017, when a high-energy neutrino detected by IceCube (IceCube-170922A) was associated at the 3 σ level to a γ-ray flare from this source. This multi-messenger photon-neutrino association remains, as per today, the most significant one ever observed. TXS 0506+056 was a poorly studied object before the IceCube-170922A event. To better characterize its broad-band emission, we organized a multi-wavelength campaign lasting 16 months (November 2017 to February 2019), covering the radio-band (Metsähovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays (Swift/XRT, NuSTAR), the high-energy γ rays (Fermi/LAT) and the very-high-energy (VHE) γ rays (MAGIC). In γ rays, the behaviour of the source was significantly different from the 2017 one: MAGIC observations show the presence of flaring activity during December 2018, while the source only shows an excess at the 4σ level during the rest of the campaign (74 hours of accumulated exposure); Fermi/LAT observations show several short (days-to-week timescale) flares, different from the long-term brightening of 2017. No significant flares are detected at lower energies. The radio light curve shows an increasing flux trend, not seen in other wavelengths. We model the multi-wavelength spectral energy distributions in a lepto-hadronic scenario, in which the hadronic emission emerges as Bethe-Heitler and pion-decay cascade in the X-rays and VHE γ rays. According to the model presented here, the December 2018 γ-ray flare was connected to a neutrino emission that was too brief and not bright enough to be detected by current neutrino instruments.
Investigating the blazar TXS 0506+056 through sharp multi-wavelength eyes during 2017-2019 / Acciari, V. A.; Aniello, T.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J. A.; Batković, I.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bökenkamp, H.; Bonnoli, G.; Bošnjak, Ž.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Del Popolo, A.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; Di Pierro, F.; Di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Fallah Ramazani, V.; Fariña, L.; Fattorini, A.; Font, L.; Fruck, C.; Fukami, S.; Fukazawa, Y.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, J. G.; Green, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Iotov, R.; Ishio, K.; Iwamura, Y.; Jiménez Martínez, I.; Jormanainen, J.; Jouvin, L.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Linhoff, L.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mas Aguilar, A.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Nakamori, T.; Nava, L.; Neustroev, V.; Nievas Rosillo, M.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Persic, M.; Pihet, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Saturni, F. G.; Schleicher, B.; Schmidt, K.; Schmuckermaier, F.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strišković, J.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Takeishi, R.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Viale, I.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Yamamoto, T.; Zarić, D.; Hodges, OVRO Collaboration: M.; Hovatta, T.; Kiehlmann, S.; Liodakis, I.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Lähteenmaäki, Metsähovi Collaboration: A.; Tornikoski, M.; Tammi, J.; D'Ammando, F.; Marchini, A.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 1538-4357. - (2022).
Investigating the blazar TXS 0506+056 through sharp multi-wavelength eyes during 2017-2019
T. AnielloMembro del Collaboration Group
;
2022
Abstract
The blazar TXS 0506+056 got into the spotlight of the astrophysical community in September 2017, when a high-energy neutrino detected by IceCube (IceCube-170922A) was associated at the 3 σ level to a γ-ray flare from this source. This multi-messenger photon-neutrino association remains, as per today, the most significant one ever observed. TXS 0506+056 was a poorly studied object before the IceCube-170922A event. To better characterize its broad-band emission, we organized a multi-wavelength campaign lasting 16 months (November 2017 to February 2019), covering the radio-band (Metsähovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays (Swift/XRT, NuSTAR), the high-energy γ rays (Fermi/LAT) and the very-high-energy (VHE) γ rays (MAGIC). In γ rays, the behaviour of the source was significantly different from the 2017 one: MAGIC observations show the presence of flaring activity during December 2018, while the source only shows an excess at the 4σ level during the rest of the campaign (74 hours of accumulated exposure); Fermi/LAT observations show several short (days-to-week timescale) flares, different from the long-term brightening of 2017. No significant flares are detected at lower energies. The radio light curve shows an increasing flux trend, not seen in other wavelengths. We model the multi-wavelength spectral energy distributions in a lepto-hadronic scenario, in which the hadronic emission emerges as Bethe-Heitler and pion-decay cascade in the X-rays and VHE γ rays. According to the model presented here, the December 2018 γ-ray flare was connected to a neutrino emission that was too brief and not bright enough to be detected by current neutrino instruments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.