In this paper, we study a Schrödinger-Bopp-Podolsky (SBP) system of partial differential equations in a bounded and smooth domain of $mathbb R^3$ with a nonconstant coupling factor. Under a compatibility condition on the boundary data we deduce the existence of solutions by means of the Ljusternik-Schnirelmann theory.

Normalized solutions to a Schrödinger-Bopp-Podolsky system under Neumann boundary conditions / Gregorin, Afonso; Siciliano, Gaetano. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 1793-6683. - 2150100(2021), pp. 1-20.

Normalized solutions to a Schrödinger-Bopp-Podolsky system under Neumann boundary conditions

Gregorin Afonso;
2021

Abstract

In this paper, we study a Schrödinger-Bopp-Podolsky (SBP) system of partial differential equations in a bounded and smooth domain of $mathbb R^3$ with a nonconstant coupling factor. Under a compatibility condition on the boundary data we deduce the existence of solutions by means of the Ljusternik-Schnirelmann theory.
2021
Schrödinger-Bopp-Podolsky system, Krasnoselski genus, Lagrange multipliers, weak solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Normalized solutions to a Schrödinger-Bopp-Podolsky system under Neumann boundary conditions / Gregorin, Afonso; Siciliano, Gaetano. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 1793-6683. - 2150100(2021), pp. 1-20.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1619637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact