Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.

Detection of pathological markers of neurodegenerative diseases following microfluidic direct conversion of patient fibroblasts into neurons / Mollinari, Cristiana; De Dominicis, Chiara; Lupacchini, Leonardo; Sansone, Luigi; Caprini, Davide; Casciola, Carlo Massimo; Wang, Ying; Zhao, Jian; Fini, Massimo; Russo, Matteo; Garaci, Enrico; Merlo, Daniela. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 23:4(2022). [10.3390/ijms23042147]

Detection of pathological markers of neurodegenerative diseases following microfluidic direct conversion of patient fibroblasts into neurons

De Dominicis, Chiara;Lupacchini, Leonardo;Sansone, Luigi;Caprini, Davide;Casciola, Carlo Massimo;
2022

Abstract

Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.
2022
biomarkers; induced neurons; microfluidics; neurodegeneration; transdifferentiation
01 Pubblicazione su rivista::01a Articolo in rivista
Detection of pathological markers of neurodegenerative diseases following microfluidic direct conversion of patient fibroblasts into neurons / Mollinari, Cristiana; De Dominicis, Chiara; Lupacchini, Leonardo; Sansone, Luigi; Caprini, Davide; Casciola, Carlo Massimo; Wang, Ying; Zhao, Jian; Fini, Massimo; Russo, Matteo; Garaci, Enrico; Merlo, Daniela. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 23:4(2022). [10.3390/ijms23042147]
File allegati a questo prodotto
File Dimensione Formato  
Mollinari_Detection_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1618019
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact