We introduce OLIVAW, an AI Othello player adopting the design principles of the famous AlphaGo programs. The main motivation behind OLIVAW was to attain exceptional competence in a non-trivial board game at a tiny fraction of the cost of its illustrious predecessors. In this paper, we show how the AlphaGo Zero's paradigm can be successfully applied to the popular game of Othello using only commodity hardware and free cloud services. While being simpler than Chess or Go, Othello maintains a considerable search space and difficulty in evaluating board positions. To achieve this result, OLIVAW implements some improvements inspired by recent works to accelerate the standard AlphaGo Zero learning process. The main modification implies doubling the positions collected per game during the training phase, by including also positions not played but largely explored by the agent. We tested the strength of OLIVAW in three different ways: by pitting it against Edax, the strongest open-source Othello engine, by playing anonymous games on the web platform OthelloQuest, and finally in two in-person matches against top-notch human players: a national champion and a former world champion.
OLIVAW: Mastering Othello without Human Knowledge, nor a Penny / Norelli, Antonio; Panconesi, Alessandro. - In: IEEE TRANSACTIONS ON GAMES. - ISSN 2475-1510. - (2022). [10.1109/TG.2022.3157345]
OLIVAW: Mastering Othello without Human Knowledge, nor a Penny
Norelli, Antonio
Primo
;Panconesi, AlessandroUltimo
2022
Abstract
We introduce OLIVAW, an AI Othello player adopting the design principles of the famous AlphaGo programs. The main motivation behind OLIVAW was to attain exceptional competence in a non-trivial board game at a tiny fraction of the cost of its illustrious predecessors. In this paper, we show how the AlphaGo Zero's paradigm can be successfully applied to the popular game of Othello using only commodity hardware and free cloud services. While being simpler than Chess or Go, Othello maintains a considerable search space and difficulty in evaluating board positions. To achieve this result, OLIVAW implements some improvements inspired by recent works to accelerate the standard AlphaGo Zero learning process. The main modification implies doubling the positions collected per game during the training phase, by including also positions not played but largely explored by the agent. We tested the strength of OLIVAW in three different ways: by pitting it against Edax, the strongest open-source Othello engine, by playing anonymous games on the web platform OthelloQuest, and finally in two in-person matches against top-notch human players: a national champion and a former world champion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.