It has been recently proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed ⁎-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra, $A:=UT_{mathbb{Z}_2}^ast (A_1, ldots , A_m)$, equipped with a suitable elementary $mathbb{Z}_2$-grading and graded involution. Here we give necessary and sufficient conditions so that $Id_{mathbb{Z}_2}^ast (A)$ factorizes in the product of the ideals of ⁎-graded polynomial identities of its ⁎-graded simple components $A_i$.
On the factorability of the ideal of *-graded polynomial identities of minimal varieties of PI *-superalgebras / Di Vincenzo, Onofrio Mario; da Silva, Viviane Ribeiro Tomaz; Spinelli, Ernesto. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 589:(2022), pp. 273-286. [10.1016/j.jalgebra.2021.09.015]
On the factorability of the ideal of *-graded polynomial identities of minimal varieties of PI *-superalgebras
Di Vincenzo, Onofrio Mario;Spinelli, Ernesto
2022
Abstract
It has been recently proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed ⁎-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra, $A:=UT_{mathbb{Z}_2}^ast (A_1, ldots , A_m)$, equipped with a suitable elementary $mathbb{Z}_2$-grading and graded involution. Here we give necessary and sufficient conditions so that $Id_{mathbb{Z}_2}^ast (A)$ factorizes in the product of the ideals of ⁎-graded polynomial identities of its ⁎-graded simple components $A_i$.File | Dimensione | Formato | |
---|---|---|---|
DiVincenzo_On-the-factorability_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
309.23 kB
Formato
Adobe PDF
|
309.23 kB | Adobe PDF | Contatta l'autore |
DiVincenzo_preprint_On-the-factorability_2022.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
362.99 kB
Formato
Adobe PDF
|
362.99 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.