In this paper the use of non-parametric Bayesian belief networks for modeling measurement error in Italian Survey on Household Income and Wealth 2008 is investigated. Non-parametric Bayesian belief networks are graphical models expressing the dependence structure between the marginals through the use of bivariate copulas associated to the arcs of the graph. Thanks to their directed structure, non-parametric Bayesian belief networks can be easily used for measurement error correction.

Graphical model using copulas for measurement error modeling / Marella, D.; Vicard, P.. - (2015). (Intervento presentato al convegno Cladag 2015. 10th Meeting of the Classification and Data Analysis Group tenutosi a Cagliari).

Graphical model using copulas for measurement error modeling.

Marella D.;Vicard P.
2015

Abstract

In this paper the use of non-parametric Bayesian belief networks for modeling measurement error in Italian Survey on Household Income and Wealth 2008 is investigated. Non-parametric Bayesian belief networks are graphical models expressing the dependence structure between the marginals through the use of bivariate copulas associated to the arcs of the graph. Thanks to their directed structure, non-parametric Bayesian belief networks can be easily used for measurement error correction.
2015
Cladag 2015. 10th Meeting of the Classification and Data Analysis Group
Bayesian network, measurement error, vines, non-parametric Bayesian belief network.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Graphical model using copulas for measurement error modeling / Marella, D.; Vicard, P.. - (2015). (Intervento presentato al convegno Cladag 2015. 10th Meeting of the Classification and Data Analysis Group tenutosi a Cagliari).
File allegati a questo prodotto
File Dimensione Formato  
CLADAG_2015_Marella_Atto.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1617610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact