In this paper the use of non-parametric Bayesian belief networks for modeling measurement error in Italian Survey on Household Income and Wealth 2008 is investigated. Non-parametric Bayesian belief networks are graphical models expressing the dependence structure between the marginals through the use of bivariate copulas associated to the arcs of the graph. Thanks to their directed structure, non-parametric Bayesian belief networks can be easily used for measurement error correction.
Graphical model using copulas for measurement error modeling / Marella, D.; Vicard, P.. - (2015). (Intervento presentato al convegno Cladag 2015. 10th Meeting of the Classification and Data Analysis Group tenutosi a Cagliari).
Graphical model using copulas for measurement error modeling.
Marella D.;Vicard P.
2015
Abstract
In this paper the use of non-parametric Bayesian belief networks for modeling measurement error in Italian Survey on Household Income and Wealth 2008 is investigated. Non-parametric Bayesian belief networks are graphical models expressing the dependence structure between the marginals through the use of bivariate copulas associated to the arcs of the graph. Thanks to their directed structure, non-parametric Bayesian belief networks can be easily used for measurement error correction.File | Dimensione | Formato | |
---|---|---|---|
CLADAG_2015_Marella_Atto.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.