One of the main algorithms for causal structure learning in Bayesian network is the PC algorithm. The PC algorithm uses conditional independence tests for model selection under the assumption of independent and identically distributed observations. In practice, sample selection in surveys involves more complex sam- pling designs then the standard test procedure is not valid even asymptotically. In this paper, a modified version of the PC algorithm is proposed for inferring casual structure from complex survey data.

Structural learning for complex survey data / Marella, D.; Vicard, P.. - (2017). (Intervento presentato al convegno Cladag 2017. 11th Scientific Meeting of the Classification and Data Analysis Group tenutosi a Milano).

Structural learning for complex survey data.

Marella D.;Vicard P.
2017

Abstract

One of the main algorithms for causal structure learning in Bayesian network is the PC algorithm. The PC algorithm uses conditional independence tests for model selection under the assumption of independent and identically distributed observations. In practice, sample selection in surveys involves more complex sam- pling designs then the standard test procedure is not valid even asymptotically. In this paper, a modified version of the PC algorithm is proposed for inferring casual structure from complex survey data.
2017
Cladag 2017. 11th Scientific Meeting of the Classification and Data Analysis Group
Complex survey data, Bayesian network, structural learning.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Structural learning for complex survey data / Marella, D.; Vicard, P.. - (2017). (Intervento presentato al convegno Cladag 2017. 11th Scientific Meeting of the Classification and Data Analysis Group tenutosi a Milano).
File allegati a questo prodotto
File Dimensione Formato  
MV_Cladag2017_comb.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 290.73 kB
Formato Adobe PDF
290.73 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1617601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact