We prove a Central Limit Theorem for the critical points of random spherical harmonics, in the high-energy limit. The result is a consequence of a deeper characterization of the total number of critical points, which are shown to be asymptotically fully correlated with the sample trispectrum, i.e. the integral of the fourth Hermite polynomial evaluated on the eigenfunctions themselves. As a consequence, the total number of critical points and the nodal length are fully correlated for random spherical harmonics, in the high-energy limit.

On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics / Cammarota, Valentina; Marinucci, Domenico. - In: JOURNAL OF THEORETICAL PROBABILITY. - ISSN 0894-9840. - (2021), pp. 1-35. [10.1007/s10959-021-01136-y]

On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics.

Valentina Cammarota
Primo
;
Domenico Marinucci
Secondo
2021

Abstract

We prove a Central Limit Theorem for the critical points of random spherical harmonics, in the high-energy limit. The result is a consequence of a deeper characterization of the total number of critical points, which are shown to be asymptotically fully correlated with the sample trispectrum, i.e. the integral of the fourth Hermite polynomial evaluated on the eigenfunctions themselves. As a consequence, the total number of critical points and the nodal length are fully correlated for random spherical harmonics, in the high-energy limit.
2021
central limit theorem; random spherical harmonics; critical points
01 Pubblicazione su rivista::01a Articolo in rivista
On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics / Cammarota, Valentina; Marinucci, Domenico. - In: JOURNAL OF THEORETICAL PROBABILITY. - ISSN 0894-9840. - (2021), pp. 1-35. [10.1007/s10959-021-01136-y]
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_Correlation-of-critical_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 445.85 kB
Formato Adobe PDF
445.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1617176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact