In this article, we study the hitting probability of a circumference CR for a correlated Brownian motion B(t) = (B1 (t), B2 (t)), ρ being the correlation coefficient. The analysis starts by first mapping the circle CR into an ellipse E with semiaxes depending on ρ and transforming the differential operator governing the hitting distribution into the classical Laplace operator. By means of two different approaches (one obtained by applying elliptic coordinates) we obtain the desired distribution as a series of Poisson kernels.

Hitting Distribution of a Correlated Planar Brownian Motion in a Disk / Marchione, M. M.; Orsingher, E.. - In: MATHEMATICS. - ISSN 2227-7390. - 10:4(2022), pp. 1-12. [10.3390/math10040536]

Hitting Distribution of a Correlated Planar Brownian Motion in a Disk

Marchione M. M.
;
Orsingher E.
2022

Abstract

In this article, we study the hitting probability of a circumference CR for a correlated Brownian motion B(t) = (B1 (t), B2 (t)), ρ being the correlation coefficient. The analysis starts by first mapping the circle CR into an ellipse E with semiaxes depending on ρ and transforming the differential operator governing the hitting distribution into the classical Laplace operator. By means of two different approaches (one obtained by applying elliptic coordinates) we obtain the desired distribution as a series of Poisson kernels.
2022
elliptic coordinates; Ghizzetti transformation; poisson kernel
01 Pubblicazione su rivista::01a Articolo in rivista
Hitting Distribution of a Correlated Planar Brownian Motion in a Disk / Marchione, M. M.; Orsingher, E.. - In: MATHEMATICS. - ISSN 2227-7390. - 10:4(2022), pp. 1-12. [10.3390/math10040536]
File allegati a questo prodotto
File Dimensione Formato  
Marchione_hitting-distribution_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 272.68 kB
Formato Adobe PDF
272.68 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1616118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact