In this paper, we address the challenge of producing fully automated land cover estimates from satellite imagery through Deep Learning algorithms. We developed our system according to a tile-based, classify-and-count design. To implement the classification engine of the system, we adopted a cutting-edge Convolutional Neural Network model named Inception-V3, which we customized and trained for scene classification on the EuroSAT dataset. We tested and validated our system on two Sentinel-2 images representing quite different Italian territories (with an area of 751 km2 and 443 km2, respectively). Because no genuine ground-truth is available for the land cover of these sub-regional territories, we built a pseudo ground-truth by integrating land cover information from flagship European projects CORINE and LUCAS. A critical and careful analysis shows that our automatic land cover estimates are in good agreement with the pseudo ground-truth and offers extensive evidence of the remarkable segmentation ability of our system. The limits of our approach are also critically discussed in the paper and possible countermeasures are illustrated. When compared with traditional projects like CORINE and LUCAS, our automatic land cover estimation system exhibits three fundamental advantages: it can dramatically reduce production costs; it can allow delivering very timely and frequent land cover statistics; it can enable land cover estimation for very small territorial areas, well beyond the NUTS-2 level. As an additional outcome of land cover estimation, our system also automatically generates moderate resolution land cover maps that might be used in cartography projects as an agile first-level tool for map update or change detection purposes.
Automatic extraction of land cover statistics from satellite imagery by deep learning / Bernasconi, Eleonora; De Fausti, Fabrizio; Pugliese, Francesco; Scannapieco, Monica; Zardetto, Diego. - In: STATISTICAL JOURNAL OF THE IAOS. - ISSN 1874-7655. - (2022), pp. 1-17. [10.3233/SJI-190555]
Automatic extraction of land cover statistics from satellite imagery by deep learning
Bernasconi, Eleonora
;
2022
Abstract
In this paper, we address the challenge of producing fully automated land cover estimates from satellite imagery through Deep Learning algorithms. We developed our system according to a tile-based, classify-and-count design. To implement the classification engine of the system, we adopted a cutting-edge Convolutional Neural Network model named Inception-V3, which we customized and trained for scene classification on the EuroSAT dataset. We tested and validated our system on two Sentinel-2 images representing quite different Italian territories (with an area of 751 km2 and 443 km2, respectively). Because no genuine ground-truth is available for the land cover of these sub-regional territories, we built a pseudo ground-truth by integrating land cover information from flagship European projects CORINE and LUCAS. A critical and careful analysis shows that our automatic land cover estimates are in good agreement with the pseudo ground-truth and offers extensive evidence of the remarkable segmentation ability of our system. The limits of our approach are also critically discussed in the paper and possible countermeasures are illustrated. When compared with traditional projects like CORINE and LUCAS, our automatic land cover estimation system exhibits three fundamental advantages: it can dramatically reduce production costs; it can allow delivering very timely and frequent land cover statistics; it can enable land cover estimation for very small territorial areas, well beyond the NUTS-2 level. As an additional outcome of land cover estimation, our system also automatically generates moderate resolution land cover maps that might be used in cartography projects as an agile first-level tool for map update or change detection purposes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.