We present an ab initio study of the ternary hydride PdCuH x, a parent compound of the superconducting PdH, at different hydrogen content (x = 1, 2). We investigate its structural, electronic, dynamical, and superconducting properties, demonstrating that, at low hydrogen content, the system is not a superconductor above 1 K; however, the highly hydrogenated structure is a strongly coupled superconductor. We give a solid rationale for the unusual increase of the superconducting critical temperature in hydrogenated palladium when alloyed with noble metals (Cu, Ag, and Au), as observed in Stritzker's experiments in 1972 [B. Stritzker, Z. Phys. 268, 261-264 (1974)] but never investigated with modern experimental and theoretical techniques. We highlight the important role played by H-derived phonon modes at intermediate frequencies, dynamically stabilized by anharmonic effects, as they strongly couple with states at the Fermi level. We hope that the present results will stimulate additional experimental investigations of structural, electronic, and superconducting properties of hydrogenated palladium-noble metal alloys. Indeed, if confirmed, these compounds could be considered a novel class of superconducting hydrides, showing different coupling mechanisms, which can be exploited to engineer new ambient-pressure superconductors.

Prediction of ambient-pressure superconductivity in ternary hydride PdCuHx / Vocaturo, R.; Tresca, C.; Ghiringhelli, G.; Profeta, G.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 131:3(2022), p. 033903. [10.1063/5.0076728]

Prediction of ambient-pressure superconductivity in ternary hydride PdCuHx

Tresca C.;
2022

Abstract

We present an ab initio study of the ternary hydride PdCuH x, a parent compound of the superconducting PdH, at different hydrogen content (x = 1, 2). We investigate its structural, electronic, dynamical, and superconducting properties, demonstrating that, at low hydrogen content, the system is not a superconductor above 1 K; however, the highly hydrogenated structure is a strongly coupled superconductor. We give a solid rationale for the unusual increase of the superconducting critical temperature in hydrogenated palladium when alloyed with noble metals (Cu, Ag, and Au), as observed in Stritzker's experiments in 1972 [B. Stritzker, Z. Phys. 268, 261-264 (1974)] but never investigated with modern experimental and theoretical techniques. We highlight the important role played by H-derived phonon modes at intermediate frequencies, dynamically stabilized by anharmonic effects, as they strongly couple with states at the Fermi level. We hope that the present results will stimulate additional experimental investigations of structural, electronic, and superconducting properties of hydrogenated palladium-noble metal alloys. Indeed, if confirmed, these compounds could be considered a novel class of superconducting hydrides, showing different coupling mechanisms, which can be exploited to engineer new ambient-pressure superconductors.
2022
superconductivity, hydrides
01 Pubblicazione su rivista::01a Articolo in rivista
Prediction of ambient-pressure superconductivity in ternary hydride PdCuHx / Vocaturo, R.; Tresca, C.; Ghiringhelli, G.; Profeta, G.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - 131:3(2022), p. 033903. [10.1063/5.0076728]
File allegati a questo prodotto
File Dimensione Formato  
Vocaturo_Prediction of ambient-pressure_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1614198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact