We consider the linear, second-order elliptic, Schrödinger-type differential operator L : =− (∇^2)/2 +r^2/2 . Because of its rotational invariance, that is it does not change under SO ( 3 ) transformations, the eigenvalue problem [− (∇^2)/2 +r^2/2]f ( x, y, z ) = λ f ( x, y, z ) can be studied more conveniently in spherical polar coordinates. It is already known that the eigenfunctions of the problem depend on three parameters. The so-called accidental degeneracy of L occurs when the eigenvalues of the problem depend on one of such parameters only. We exploited ladder operators to reformulate accidental degeneracy, so as to provide a new way to describe degeneracy in elliptic PDE problems.

Accidental Degeneracy of an Elliptic Differential Operator: a Clarification in Terms of Ladder Operators / De Marchis, Roberto; Palestini, Arsen; Patri', Stefano. - In: MATHEMATICA. - ISSN 1222-9016. - 9:23(2021), pp. 1-14. [10.3390/math9233005]

Accidental Degeneracy of an Elliptic Differential Operator: a Clarification in Terms of Ladder Operators

Roberto De Marchis;Arsen Palestini;Stefano Patrì
2021

Abstract

We consider the linear, second-order elliptic, Schrödinger-type differential operator L : =− (∇^2)/2 +r^2/2 . Because of its rotational invariance, that is it does not change under SO ( 3 ) transformations, the eigenvalue problem [− (∇^2)/2 +r^2/2]f ( x, y, z ) = λ f ( x, y, z ) can be studied more conveniently in spherical polar coordinates. It is already known that the eigenfunctions of the problem depend on three parameters. The so-called accidental degeneracy of L occurs when the eigenvalues of the problem depend on one of such parameters only. We exploited ladder operators to reformulate accidental degeneracy, so as to provide a new way to describe degeneracy in elliptic PDE problems.
File allegati a questo prodotto
File Dimensione Formato  
Patrì_Accidental-Degeneracy_2021.pdf

accesso aperto

Note: https://www.mdpi.com/2227-7390/9/23/3005/htm
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 302.19 kB
Formato Adobe PDF
302.19 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1614093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact