We prove that graphs excluding a fixed immersion have bounded nonrepetitive chromatic number. More generally, we prove that if H is a fixed planar graph that has a planar embedding with all the vertices with degree at least 4 on a single face, then graphs excluding H as a topological minor have bounded nonrepetitive chromatic number. This is the largest class of graphs known to have bounded nonrepetitive chromatic number.

Nonrepetitive colorings of graphs excluding a fixed immersion or topological minor / Wollan, P.; Wood, D. R.. - In: JOURNAL OF GRAPH THEORY. - ISSN 0364-9024. - 91:3(2019), pp. 259-266. [10.1002/jgt.22430]

Nonrepetitive colorings of graphs excluding a fixed immersion or topological minor

Wollan P.;
2019

Abstract

We prove that graphs excluding a fixed immersion have bounded nonrepetitive chromatic number. More generally, we prove that if H is a fixed planar graph that has a planar embedding with all the vertices with degree at least 4 on a single face, then graphs excluding H as a topological minor have bounded nonrepetitive chromatic number. This is the largest class of graphs known to have bounded nonrepetitive chromatic number.
2019
graph coloring; immersion; nonrepetitive coloring; topological minor
01 Pubblicazione su rivista::01a Articolo in rivista
Nonrepetitive colorings of graphs excluding a fixed immersion or topological minor / Wollan, P.; Wood, D. R.. - In: JOURNAL OF GRAPH THEORY. - ISSN 0364-9024. - 91:3(2019), pp. 259-266. [10.1002/jgt.22430]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1612491
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact