Calcium (Ca2+) signaling represents a universal information code in plants, playing crucial roles spanning developmental processes to stress responses. Ca2+ signals are decoded into defined plant adaptive responses by different Ca2+ sensing proteins, including calmodulin (CaM) and calmodulin-like (CML) proteins. Although major advances have been achieved in describing how these Ca2+ decoding proteins interact and regulate downstream target effectors, the molecular details of these processes remain largely unknown. Herein, the kinetics of Ca2+ dissociation from a conserved CaM and two CML isoforms from A. thaliana has been studied by fluorescence stopped-flow spectroscopy. Kinetic data were obtained for the isolated Ca2+-bound proteins as well as for the proteins complexed with different target peptides. Moreover, the lobe specific interactions between the Ca2+ sensing proteins and their targets were characterized by using a panel of protein mutants deficient in Ca2+ binding at the N-lobe or C-lobe. Results were analyzed and discussed in the context of the Ca2+-decoding and Ca2+-controlled target binding mechanisms in plants.
Rapid kinetics of calcium dissociation from plant calmodulin and calmodulin-like proteins and effect of target peptides / Troilo, F.; Pedretti, M.; Travaglini-Allocatelli, C.; Astegno, A.; Di Matteo, A.. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - 590:(2022), pp. 103-108. [10.1016/j.bbrc.2021.12.077]
Rapid kinetics of calcium dissociation from plant calmodulin and calmodulin-like proteins and effect of target peptides
Troilo F.;Travaglini-Allocatelli C.;Di Matteo A.
2022
Abstract
Calcium (Ca2+) signaling represents a universal information code in plants, playing crucial roles spanning developmental processes to stress responses. Ca2+ signals are decoded into defined plant adaptive responses by different Ca2+ sensing proteins, including calmodulin (CaM) and calmodulin-like (CML) proteins. Although major advances have been achieved in describing how these Ca2+ decoding proteins interact and regulate downstream target effectors, the molecular details of these processes remain largely unknown. Herein, the kinetics of Ca2+ dissociation from a conserved CaM and two CML isoforms from A. thaliana has been studied by fluorescence stopped-flow spectroscopy. Kinetic data were obtained for the isolated Ca2+-bound proteins as well as for the proteins complexed with different target peptides. Moreover, the lobe specific interactions between the Ca2+ sensing proteins and their targets were characterized by using a panel of protein mutants deficient in Ca2+ binding at the N-lobe or C-lobe. Results were analyzed and discussed in the context of the Ca2+-decoding and Ca2+-controlled target binding mechanisms in plants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.