In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate second-order information into the augmented Lagrangian framework, using an active-set strategy. We show that the overall algorithm has the same convergence properties as ALGENCAN and an asymptotic quadratic convergence rate under suitable assumptions. The numerical results confirm that the proposed algorithm is a viable alternative to ALGENCAN with greater robustness.

An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information / Cristofari, Andrea; Di Pillo, Gianni; Liuzzi, Giampaolo; Lucidi, Stefano. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - (2022). [10.1007/s10957-022-02003-4]

An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information

Gianni Di Pillo;Giampaolo Liuzzi;Stefano Lucidi
2022

Abstract

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate second-order information into the augmented Lagrangian framework, using an active-set strategy. We show that the overall algorithm has the same convergence properties as ALGENCAN and an asymptotic quadratic convergence rate under suitable assumptions. The numerical results confirm that the proposed algorithm is a viable alternative to ALGENCAN with greater robustness.
2022
Constrained optimization; Augmented Lagrangian methods; Nonlinear programming algorithms; Large-scale optimization
01 Pubblicazione su rivista::01a Articolo in rivista
An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information / Cristofari, Andrea; Di Pillo, Gianni; Liuzzi, Giampaolo; Lucidi, Stefano. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - (2022). [10.1007/s10957-022-02003-4]
File allegati a questo prodotto
File Dimensione Formato  
Cristofari_An-Augmented_2022.pdf

accesso aperto

Note: https://doi.org/10.1007/s10957-022-02003-4
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 520.92 kB
Formato Adobe PDF
520.92 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1611228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact