Dispersive shock waves in thermal optical media are nonlinear phenomena whose intrinsic irreversibility is described by time asymmetric quantum mechanics. Recent studies demonstrated that the nonlocal wave breaking evolves in an exponentially decaying dynamics ruled by the reversed harmonic oscillator, namely, the simplest irreversible quantum system in the rigged Hilbert spaces. The generalization of this theory to more complex scenarios is still an open question. In this work, we use a thermal third-order medium with an unprecedented giant Kerr coefficient, the m-cresol/nylon mixed solution, to access an extremely nonlinear, highly nonlocal regime and realize anisotropic shock waves with internal gaps. We compare our experimental observations to results obtained under similar conditions but in hemoglobin solutions from human red blood cells, and found that the gap formation strongly depends on the nonlinearity strength. We prove that a superposition of Gamow vectors in an ad hoc rigged Hilbert space, that is, a tensorial product between the reversed and the standard harmonic oscillators spaces, describes the beam propagation beyond the shock point. The anisotropy turns out from the interaction of trapping and antitrapping potentials. Our work furnishes the description of novel intriguing shock phenomena mediated by extreme nonlinearities.
Anisotropic Optical Shock Waves in Isotropic Media with Giant Nonlocal Nonlinearity / Marcucci, G.; Hu, X.; Cala, P.; Man, W.; Pierangeli, D.; Conti, C.; Chen, Z.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 125:24(2020), p. 243902. [10.1103/PhysRevLett.125.243902]
Anisotropic Optical Shock Waves in Isotropic Media with Giant Nonlocal Nonlinearity
Marcucci G.
Investigation
;Pierangeli D.Supervision
;Conti C.Supervision
;
2020
Abstract
Dispersive shock waves in thermal optical media are nonlinear phenomena whose intrinsic irreversibility is described by time asymmetric quantum mechanics. Recent studies demonstrated that the nonlocal wave breaking evolves in an exponentially decaying dynamics ruled by the reversed harmonic oscillator, namely, the simplest irreversible quantum system in the rigged Hilbert spaces. The generalization of this theory to more complex scenarios is still an open question. In this work, we use a thermal third-order medium with an unprecedented giant Kerr coefficient, the m-cresol/nylon mixed solution, to access an extremely nonlinear, highly nonlocal regime and realize anisotropic shock waves with internal gaps. We compare our experimental observations to results obtained under similar conditions but in hemoglobin solutions from human red blood cells, and found that the gap formation strongly depends on the nonlinearity strength. We prove that a superposition of Gamow vectors in an ad hoc rigged Hilbert space, that is, a tensorial product between the reversed and the standard harmonic oscillators spaces, describes the beam propagation beyond the shock point. The anisotropy turns out from the interaction of trapping and antitrapping potentials. Our work furnishes the description of novel intriguing shock phenomena mediated by extreme nonlinearities.File | Dimensione | Formato | |
---|---|---|---|
Marcucci_Anisotropic Optical Shock_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.