We discover a family of surfaces of general type with K2=3 and pg=q=0 as free C13 quotients of special linear cuts of the octonionic projective plane OP2. A special member of the family has 3 singularities of type A2, and is a quotient of a fake projective plane. We use the techniques of earlier work of Borisov and Fatighenti to define this fake projective plane by explicit equations in its bicanonical embedding.

A journey from the octonionic P2 to a fake P2 / Borisov, Lev; Buch, Anders; Fatighenti, Enrico. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2022). [10.1090/proc/15840]

A journey from the octonionic P2 to a fake P2

Fatighenti, Enrico
2022

Abstract

We discover a family of surfaces of general type with K2=3 and pg=q=0 as free C13 quotients of special linear cuts of the octonionic projective plane OP2. A special member of the family has 3 singularities of type A2, and is a quotient of a fake projective plane. We use the techniques of earlier work of Borisov and Fatighenti to define this fake projective plane by explicit equations in its bicanonical embedding.
2022
fake projective planes; homogeneous spaces; surfaces of general type
01 Pubblicazione su rivista::01a Articolo in rivista
A journey from the octonionic P2 to a fake P2 / Borisov, Lev; Buch, Anders; Fatighenti, Enrico. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2022). [10.1090/proc/15840]
File allegati a questo prodotto
File Dimensione Formato  
Borisov_A-journey_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 192.78 kB
Formato Adobe PDF
192.78 kB Adobe PDF   Contatta l'autore
Borisov_preprint_A-journey_2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 133.73 kB
Formato Adobe PDF
133.73 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1610505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact