We discover a family of surfaces of general type with K2=3 and pg=q=0 as free C13 quotients of special linear cuts of the octonionic projective plane OP2. A special member of the family has 3 singularities of type A2, and is a quotient of a fake projective plane. We use the techniques of earlier work of Borisov and Fatighenti to define this fake projective plane by explicit equations in its bicanonical embedding.
A journey from the octonionic P2 to a fake P2 / Borisov, Lev; Buch, Anders; Fatighenti, Enrico. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2022). [10.1090/proc/15840]
A journey from the octonionic P2 to a fake P2
Fatighenti, Enrico
2022
Abstract
We discover a family of surfaces of general type with K2=3 and pg=q=0 as free C13 quotients of special linear cuts of the octonionic projective plane OP2. A special member of the family has 3 singularities of type A2, and is a quotient of a fake projective plane. We use the techniques of earlier work of Borisov and Fatighenti to define this fake projective plane by explicit equations in its bicanonical embedding.| File | Dimensione | Formato | |
|---|---|---|---|
|
Borisov_A-journey_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
192.78 kB
Formato
Adobe PDF
|
192.78 kB | Adobe PDF | Contatta l'autore |
|
Borisov_preprint_A-journey_2022.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
133.73 kB
Formato
Adobe PDF
|
133.73 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


