Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is significantly larger due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics. In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on temporal network motif models.
Temporal Network Motifs: Models, Limitations, Evaluation / Liu, P.; Guarrasi, V.; Sariyuce, A. E.. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 35:1(2023), pp. 945-957. [10.1109/TKDE.2021.3077495]
Temporal Network Motifs: Models, Limitations, Evaluation
Guarrasi V.;
2023
Abstract
Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is significantly larger due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics. In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on temporal network motif models.File | Dimensione | Formato | |
---|---|---|---|
Liu_Temporal_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Contatta l'autore |
Liu_preprint_Temporal_2021.pdf
solo gestori archivio
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.