This paper presents sufficient conditions for existence and uniqueness of a steady state equilibrium in an OLG model with non-separable preferences and analyses the implications of such assumption for the local stability of the steady state equilibrium. The conditions for a stable solution are derived under the assumption that habits are transmitted both across and within generations. Under this assumption, the paper shows that monotonic convergence to the steady state is not always assured. The paper thus proves that also the optimal solution may be affected by instability and explosive dynamics, under particular conditions on the relevant parameters.

Dynamics and stability in an OLG model with non-separable preferences / Marini, Giorgia. - In: RIVISTA ITALIANA DI ECONOMIA, DEMOGRAFIA E STATISTICA. - ISSN 0035-6832. - 76:1(2022), pp. 179-190.

Dynamics and stability in an OLG model with non-separable preferences

Giorgia Marini
2022

Abstract

This paper presents sufficient conditions for existence and uniqueness of a steady state equilibrium in an OLG model with non-separable preferences and analyses the implications of such assumption for the local stability of the steady state equilibrium. The conditions for a stable solution are derived under the assumption that habits are transmitted both across and within generations. Under this assumption, the paper shows that monotonic convergence to the steady state is not always assured. The paper thus proves that also the optimal solution may be affected by instability and explosive dynamics, under particular conditions on the relevant parameters.
2022
Non-separable preferences; OLG; cycles;
01 Pubblicazione su rivista::01a Articolo in rivista
Dynamics and stability in an OLG model with non-separable preferences / Marini, Giorgia. - In: RIVISTA ITALIANA DI ECONOMIA, DEMOGRAFIA E STATISTICA. - ISSN 0035-6832. - 76:1(2022), pp. 179-190.
File allegati a questo prodotto
File Dimensione Formato  
Marini_Dynamics_and-stability_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 899.43 kB
Formato Adobe PDF
899.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1610176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact