We determine the asymptotics of the largest family of qualitatively 2-independent k-partitions of an n-set, for every k > 2. We generalize a Sperner-type theorem for 2-partite sets of Korner and Simonyi to the k-partite case. Both results have the feature that the corresponding trivial information-theoretic upper bound is tight. The results follow from a more general Sperner capacity theorem for a family of graphs in the sense of our previous work on Sperner theorems on directed graphs.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | SPERNER CAPACITIES | |
Autori: | ||
Data di pubblicazione: | 1993 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11573/16089 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.