We provide a direct proof of Weyl's law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called "averaged variational principle."Upper bounds are obtained in the spirit of Berezin-Li-Yau. Moreover, we state a conjecture for the second term in Weyl's law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.

On the spectral asymptotics for the buckling problem / Buoso, D.; Luzzini, P.; Provenzano, L.; Stubbe, J.. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 62:12(2021), p. 121501. [10.1063/5.0069529]

On the spectral asymptotics for the buckling problem

Provenzano L.
;
2021

Abstract

We provide a direct proof of Weyl's law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called "averaged variational principle."Upper bounds are obtained in the spirit of Berezin-Li-Yau. Moreover, we state a conjecture for the second term in Weyl's law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.
2021
Biharmonic operator; Buckling problem; eigenvalue asymptotics; Riesz means
01 Pubblicazione su rivista::01a Articolo in rivista
On the spectral asymptotics for the buckling problem / Buoso, D.; Luzzini, P.; Provenzano, L.; Stubbe, J.. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 62:12(2021), p. 121501. [10.1063/5.0069529]
File allegati a questo prodotto
File Dimensione Formato  
Buoso_spectralAsymptotics_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 368.97 kB
Formato Adobe PDF
368.97 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1607323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact