Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis—providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.

Genetic variants of fatty acid amide hydrolase modulate acute inflammatory responses to colitis in adult male mice / Vecchiarelli, H. A.; Aukema, R. J.; Hume, C.; Chiang, V.; Morena, M.; Keenan, C. M.; Nastase, A. S.; Lee, F. S.; Pittman, Q. J.; Sharkey, K. A.; Hill, M. N.. - In: FRONTIERS IN CELLULAR NEUROSCIENCE. - ISSN 1662-5102. - 15:(2021), pp. 1-12. [10.3389/fncel.2021.764706]

Genetic variants of fatty acid amide hydrolase modulate acute inflammatory responses to colitis in adult male mice

Morena M.;
2021

Abstract

Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis—providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.
2021
amygdala; colitis; cytokines; endocannabinoids; inflammation
01 Pubblicazione su rivista::01a Articolo in rivista
Genetic variants of fatty acid amide hydrolase modulate acute inflammatory responses to colitis in adult male mice / Vecchiarelli, H. A.; Aukema, R. J.; Hume, C.; Chiang, V.; Morena, M.; Keenan, C. M.; Nastase, A. S.; Lee, F. S.; Pittman, Q. J.; Sharkey, K. A.; Hill, M. N.. - In: FRONTIERS IN CELLULAR NEUROSCIENCE. - ISSN 1662-5102. - 15:(2021), pp. 1-12. [10.3389/fncel.2021.764706]
File allegati a questo prodotto
File Dimensione Formato  
Vecchiarelli_Genetic-variants_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 9.74 MB
Formato Adobe PDF
9.74 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1607120
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact