The high reconfiguration time of virtualised networks led to the definition of allocation procedures based on the prediction of the processing resources required. We propose an Artificial Intelligence-based resource allocation procedure in which the use of processing resources is monitored and the resources to be allocated are accordingly predicted. We evaluate the impact on the costs of the proposed allocation procedure and show that the cost increase is limited with respect to the case of exact knowledge of the needed processing resources.

AI-based resource prediction in network function vrtualization architectures / Eramo, V.; Valente, F.; Lavacca, F. G.; Catena, T.. - 2021:(2021), pp. 909-914. (Intervento presentato al convegno 12th International Conference on Information and Communication Technology Convergence, ICTC 2021 tenutosi a Jeju Island; Republic of Korea) [10.1109/ICTC52510.2021.9621054].

AI-based resource prediction in network function vrtualization architectures

Eramo V.;Valente F.;Lavacca F. G.;Catena T.
2021

Abstract

The high reconfiguration time of virtualised networks led to the definition of allocation procedures based on the prediction of the processing resources required. We propose an Artificial Intelligence-based resource allocation procedure in which the use of processing resources is monitored and the resources to be allocated are accordingly predicted. We evaluate the impact on the costs of the proposed allocation procedure and show that the cost increase is limited with respect to the case of exact knowledge of the needed processing resources.
2021
12th International Conference on Information and Communication Technology Convergence, ICTC 2021
long short term memory; network function virtualization; neural network; resource allocation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
AI-based resource prediction in network function vrtualization architectures / Eramo, V.; Valente, F.; Lavacca, F. G.; Catena, T.. - 2021:(2021), pp. 909-914. (Intervento presentato al convegno 12th International Conference on Information and Communication Technology Convergence, ICTC 2021 tenutosi a Jeju Island; Republic of Korea) [10.1109/ICTC52510.2021.9621054].
File allegati a questo prodotto
File Dimensione Formato  
Eramo_AI-based_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 352.04 kB
Formato Adobe PDF
352.04 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1606034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact