Harmonics of the mains frequency (50 Hz) have been systematically observed in the transverse beam spectrum of the Large Hadron Collider (LHC) since the start of its operation in the form of dipolar excitations. In the presence of strong nonlinearities such as beam-beam interactions, as many of these 50 Hz harmonics reside in the vicinity of the betatron tune they can increase the tune diffusion of the particles in the distribution, leading to proton losses and eventually to a significant reduction of the beam lifetime. The aim of this paper is to determine whether the 50 Hz harmonics have an impact on the beam performance of the LHC. A quantitative characterization of the 50 Hz ripple spectrum present in the operation of the accelerator, together with an understanding of its source is an essential ingredient to also evaluate the impact of the 50 Hz harmonics on the future upgrade of the LHC, the High Luminosity LHC (HL-LHC). To this end, simulations with the single-particle tracking code, sixtrack, are employed including a realistic 50 Hz ripple spectrum as extracted from experimental observations to quantify the impact of such effects in terms of tune diffusion, dynamic aperture, and beam lifetime. The methods and results of the tracking studies are reported and discussed in this paper.

Impact of the 50 Hz harmonics on the beam evolution of the Large Hadron Collider / Kostoglou, S.; Arduini, G.; Papaphilippou, Y.; Sterbini, G.; Intelisano, L.. - In: PHYSICAL REVIEW. ACCELERATORS AND BEAMS. - ISSN 2469-9888. - 24:3(2021). [10.1103/PhysRevAccelBeams.24.034002]

Impact of the 50 Hz harmonics on the beam evolution of the Large Hadron Collider

Sterbini G.;Intelisano L.
2021

Abstract

Harmonics of the mains frequency (50 Hz) have been systematically observed in the transverse beam spectrum of the Large Hadron Collider (LHC) since the start of its operation in the form of dipolar excitations. In the presence of strong nonlinearities such as beam-beam interactions, as many of these 50 Hz harmonics reside in the vicinity of the betatron tune they can increase the tune diffusion of the particles in the distribution, leading to proton losses and eventually to a significant reduction of the beam lifetime. The aim of this paper is to determine whether the 50 Hz harmonics have an impact on the beam performance of the LHC. A quantitative characterization of the 50 Hz ripple spectrum present in the operation of the accelerator, together with an understanding of its source is an essential ingredient to also evaluate the impact of the 50 Hz harmonics on the future upgrade of the LHC, the High Luminosity LHC (HL-LHC). To this end, simulations with the single-particle tracking code, sixtrack, are employed including a realistic 50 Hz ripple spectrum as extracted from experimental observations to quantify the impact of such effects in terms of tune diffusion, dynamic aperture, and beam lifetime. The methods and results of the tracking studies are reported and discussed in this paper.
2021
Accelerators & Beams; Beam loss; Single-particle dynamics;
01 Pubblicazione su rivista::01a Articolo in rivista
Impact of the 50 Hz harmonics on the beam evolution of the Large Hadron Collider / Kostoglou, S.; Arduini, G.; Papaphilippou, Y.; Sterbini, G.; Intelisano, L.. - In: PHYSICAL REVIEW. ACCELERATORS AND BEAMS. - ISSN 2469-9888. - 24:3(2021). [10.1103/PhysRevAccelBeams.24.034002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1605412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact