We are concerned with the Lane-Emden problem −∆u = u^P in Ω u > 0 in Ω u = 0 on ∂Ω, where Ω ⊂ R^2 is a smooth bounded domain and p > 1 is sufficiently large. Improving some known asymptotic estimates on the solutions, we prove the non-degeneracy and local uniqueness of the multi-spikes positive solutions for general domains. Our methods mainly use ODE’s theory, various local Pohozaev identities, blow-up analysis and the properties of Green’s function.
Non-degeneracy and local uniqueness of positive solutions to the Lane-Emden problem in dimension two / Grossi, Massimo; Ianni, Isabella; Luo, Peng; Yan, Shusen. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 1776-3371. - 157(2022), pp. 145-210.
Non-degeneracy and local uniqueness of positive solutions to the Lane-Emden problem in dimension two
MASSIMO GROSSI;ISABELLA IANNI;
2022
Abstract
We are concerned with the Lane-Emden problem −∆u = u^P in Ω u > 0 in Ω u = 0 on ∂Ω, where Ω ⊂ R^2 is a smooth bounded domain and p > 1 is sufficiently large. Improving some known asymptotic estimates on the solutions, we prove the non-degeneracy and local uniqueness of the multi-spikes positive solutions for general domains. Our methods mainly use ODE’s theory, various local Pohozaev identities, blow-up analysis and the properties of Green’s function.File | Dimensione | Formato | |
---|---|---|---|
Grossi_Non-degeneracy_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
856.44 kB
Formato
Adobe PDF
|
856.44 kB | Adobe PDF | Contatta l'autore |
preprintgrossiianniluoyan.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
627.19 kB
Formato
Adobe PDF
|
627.19 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.