We address an optimal reachability problem for a planar manipulator in a constrained environment. After introducing the optmization problem in full generality, we practically embed the geometry of the workspace in the problem, by considering some classes of obstacles. To this end, we present an analytical approximation of the distance function from the ellipse. We then apply our method to particular models of hyper-redundant and soft manipulators, by also presenting some numerical experiments.

Constrained reachability problems for a planar manipulator / Cacace, S.; Lai, A. C.; Loreti, P.. - 793:(2022), pp. 17-31. (Intervento presentato al convegno 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2020 tenutosi a Virtual, Online; France;) [10.1007/978-3-030-92442-3_2].

Constrained reachability problems for a planar manipulator

Cacace S.;Lai A. C.;Loreti P.
2022

Abstract

We address an optimal reachability problem for a planar manipulator in a constrained environment. After introducing the optmization problem in full generality, we practically embed the geometry of the workspace in the problem, by considering some classes of obstacles. To this end, we present an analytical approximation of the distance function from the ellipse. We then apply our method to particular models of hyper-redundant and soft manipulators, by also presenting some numerical experiments.
2022
17th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2020
Hyper-redundant manipulators; Obstacle avoidance; Octopus-like manipulators; Optimal reachability
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Constrained reachability problems for a planar manipulator / Cacace, S.; Lai, A. C.; Loreti, P.. - 793:(2022), pp. 17-31. (Intervento presentato al convegno 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2020 tenutosi a Virtual, Online; France;) [10.1007/978-3-030-92442-3_2].
File allegati a questo prodotto
File Dimensione Formato  
Cacace_Constrained_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 660.8 kB
Formato Adobe PDF
660.8 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1605098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact