In this paper, we present a procedure for scoring and ranking statistical units in ordinal multi-indicator systems, by integrating classical dimensionality reduction tools and novel results in Partial Order Theory. Units are ranked based on “dominance” scores, which depend upon both the structure of the partial order and the joint frequency distribution. Dominance scores are complemented with scores of incomparability among units, so to assess the ranking quality. The procedure is computationally light and is here applied to data about financial literacy in Italy

Ranking extraction in ordinal multi-indicator systems / Fattore, Marco; Arcagni, ALBERTO GIOVANNI. - (2020), pp. 378-383. (Intervento presentato al convegno SIS 2020 tenutosi a Pisa).

Ranking extraction in ordinal multi-indicator systems

Alberto Arcagni
2020

Abstract

In this paper, we present a procedure for scoring and ranking statistical units in ordinal multi-indicator systems, by integrating classical dimensionality reduction tools and novel results in Partial Order Theory. Units are ranked based on “dominance” scores, which depend upon both the structure of the partial order and the joint frequency distribution. Dominance scores are complemented with scores of incomparability among units, so to assess the ranking quality. The procedure is computationally light and is here applied to data about financial literacy in Italy
2020
SIS 2020
Financial literacy; Ordinal data; Partial order; Poset; Ranking
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Ranking extraction in ordinal multi-indicator systems / Fattore, Marco; Arcagni, ALBERTO GIOVANNI. - (2020), pp. 378-383. (Intervento presentato al convegno SIS 2020 tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Arcagni_Ranking-extraction_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 412.74 kB
Formato Adobe PDF
412.74 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1605042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact