In this paper we derive a line tension model for dislocations in 3D starting from a geometrically nonlinear elastic energy with quadratic growth. In the asymptotic analysis, as the amplitude of the Burgers vectors (proportional to the lattice spacing) tends to zero, we show that the elastic energy linearizes and the line tension energy density, up to an overall constant rotation, is identi_ed by the linearized cell problem formula given in [S. Conti, A. Garroni, and M. Ortiz, Arch. Ration. Mech. Anal., 218 (2015), pp. 699{755].

Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth / Garroni, A.; Marziani, R.; Scala, R.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 53:4(2021), pp. 4252-4302. [10.1137/20M1330117]

Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth

GARRONI A.
;
MARZIANI R.;SCALA R.
2021

Abstract

In this paper we derive a line tension model for dislocations in 3D starting from a geometrically nonlinear elastic energy with quadratic growth. In the asymptotic analysis, as the amplitude of the Burgers vectors (proportional to the lattice spacing) tends to zero, we show that the elastic energy linearizes and the line tension energy density, up to an overall constant rotation, is identi_ed by the linearized cell problem formula given in [S. Conti, A. Garroni, and M. Ortiz, Arch. Ration. Mech. Anal., 218 (2015), pp. 699{755].
2021
Dislocations; nonlinear elasticity; relaxation; Γ-convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth / Garroni, A.; Marziani, R.; Scala, R.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 53:4(2021), pp. 4252-4302. [10.1137/20M1330117]
File allegati a questo prodotto
File Dimensione Formato  
Garroni_Derivation_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 609.48 kB
Formato Adobe PDF
609.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1604040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact