A parsimonious modelling approach for clustering mixed-type (ordinal and continuous) data is presented. It is assumed that ordinal and continuous data follow a finite mixture of Gaussians that is only partially observed.We define a general class of parsimonious models for mixed-type data by imposing a factor decomposition on component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood.

Mixture of factor analyzers for mixed-type data via a composite likelihood approach / Ranalli, Monia; Rocci, Roberto. - (2021), pp. 51-56. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).

Mixture of factor analyzers for mixed-type data via a composite likelihood approach

Ranalli Monia;Rocci Roberto
2021

Abstract

A parsimonious modelling approach for clustering mixed-type (ordinal and continuous) data is presented. It is assumed that ordinal and continuous data follow a finite mixture of Gaussians that is only partially observed.We define a general class of parsimonious models for mixed-type data by imposing a factor decomposition on component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood.
2021
MBC2 2020
mixture models; factor analyzers; composite likelihood; EM algorithm; mixed-type data
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixture of factor analyzers for mixed-type data via a composite likelihood approach / Ranalli, Monia; Rocci, Roberto. - (2021), pp. 51-56. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_Mixture-of-factor_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 264.12 kB
Formato Adobe PDF
264.12 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1603304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact