A parsimonious modelling approach for clustering mixed-type (ordinal and continuous) data is presented. It is assumed that ordinal and continuous data follow a finite mixture of Gaussians that is only partially observed.We define a general class of parsimonious models for mixed-type data by imposing a factor decomposition on component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood.
Mixture of factor analyzers for mixed-type data via a composite likelihood approach / Ranalli, Monia; Rocci, Roberto. - (2021), pp. 51-56. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).
Mixture of factor analyzers for mixed-type data via a composite likelihood approach
Ranalli Monia;Rocci Roberto
2021
Abstract
A parsimonious modelling approach for clustering mixed-type (ordinal and continuous) data is presented. It is assumed that ordinal and continuous data follow a finite mixture of Gaussians that is only partially observed.We define a general class of parsimonious models for mixed-type data by imposing a factor decomposition on component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood.File | Dimensione | Formato | |
---|---|---|---|
Ranalli_Mixture-of-factor_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
264.12 kB
Formato
Adobe PDF
|
264.12 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.