Available approaches for the computation of lasso-penalized estimators of clusterwise linear regression models are time consuming and/or require approximate schemes. This makes the computation of the final solution, as well as the tuning of the penalty necessary to select the model, particularly cumbersome. To ease such computation, we introduce: 1) an expectation maximization algorithm with closed-form updates, that uses efficient formulas that are available for linear regression; 2) a new strategy to select the model based on a Least-Angle-RegreSsion (LARS) grid using standard information criteria.
Lasso-penalized clusterwise linear regression modeling with a two–step approach / Di Mari, R.; Gattone, S. A.; Rocci, R.. - (2021), pp. 39-44. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).
Lasso-penalized clusterwise linear regression modeling with a two–step approach
Rocci R.
2021
Abstract
Available approaches for the computation of lasso-penalized estimators of clusterwise linear regression models are time consuming and/or require approximate schemes. This makes the computation of the final solution, as well as the tuning of the penalty necessary to select the model, particularly cumbersome. To ease such computation, we introduce: 1) an expectation maximization algorithm with closed-form updates, that uses efficient formulas that are available for linear regression; 2) a new strategy to select the model based on a Least-Angle-RegreSsion (LARS) grid using standard information criteria.| File | Dimensione | Formato | |
|---|---|---|---|
|
Di Mari_Lasso-penalized-clusterwise_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
283.11 kB
Formato
Adobe PDF
|
283.11 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


