Available approaches for the computation of lasso-penalized estimators of clusterwise linear regression models are time consuming and/or require approximate schemes. This makes the computation of the final solution, as well as the tuning of the penalty necessary to select the model, particularly cumbersome. To ease such computation, we introduce: 1) an expectation maximization algorithm with closed-form updates, that uses efficient formulas that are available for linear regression; 2) a new strategy to select the model based on a Least-Angle-RegreSsion (LARS) grid using standard information criteria.

Lasso-penalized clusterwise linear regression modeling with a two–step approach / Di Mari, R.; Gattone, S. A.; Rocci, R.. - (2021), pp. 39-44. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).

Lasso-penalized clusterwise linear regression modeling with a two–step approach

Rocci R.
2021

Abstract

Available approaches for the computation of lasso-penalized estimators of clusterwise linear regression models are time consuming and/or require approximate schemes. This makes the computation of the final solution, as well as the tuning of the penalty necessary to select the model, particularly cumbersome. To ease such computation, we introduce: 1) an expectation maximization algorithm with closed-form updates, that uses efficient formulas that are available for linear regression; 2) a new strategy to select the model based on a Least-Angle-RegreSsion (LARS) grid using standard information criteria.
2021
MBC2 2020
clusterwise linear regression; penalized likelihood; feature selection
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Lasso-penalized clusterwise linear regression modeling with a two–step approach / Di Mari, R.; Gattone, S. A.; Rocci, R.. - (2021), pp. 39-44. (Intervento presentato al convegno MBC2 2020 tenutosi a Catania (virtuale), Italy).
File allegati a questo prodotto
File Dimensione Formato  
Di Mari_Lasso-penalized-clusterwise_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 283.11 kB
Formato Adobe PDF
283.11 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1603302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact