The scaled-uniform model has been lately considered to illustrate problems in frequentist point estimation arising when the minimal sufficient statistic is not complete. Here we consider the problem of interval estimation and derive pivotal quantities based on a series of point estimators proposed in the literature. We compare the resulting intervals of given confidence level in terms of expected lengths. Pivotal quantities, confidence intervals and expected lengths are all computed using simulations implemented with R (code is available). Numerical results suggest that the maximum likelihood estimator, regardless of its inefficiency, yields confidence intervals that outperform the other available sets of the same level.

Confidence intervals for the parameter of the scaled-uniform model / De Santis, F.; Gubbiotti, S.. - In: COMMUNICATIONS IN STATISTICS. SIMULATION AND COMPUTATION. - ISSN 0361-0918. - 52:12(2023), pp. 6235-6248. [10.1080/03610918.2021.2011921]

Confidence intervals for the parameter of the scaled-uniform model

De Santis F.;Gubbiotti S.
2023

Abstract

The scaled-uniform model has been lately considered to illustrate problems in frequentist point estimation arising when the minimal sufficient statistic is not complete. Here we consider the problem of interval estimation and derive pivotal quantities based on a series of point estimators proposed in the literature. We compare the resulting intervals of given confidence level in terms of expected lengths. Pivotal quantities, confidence intervals and expected lengths are all computed using simulations implemented with R (code is available). Numerical results suggest that the maximum likelihood estimator, regardless of its inefficiency, yields confidence intervals that outperform the other available sets of the same level.
2023
equal-tails intervals; highest density intervals; likelihood intervals; pivotal quantities
01 Pubblicazione su rivista::01a Articolo in rivista
Confidence intervals for the parameter of the scaled-uniform model / De Santis, F.; Gubbiotti, S.. - In: COMMUNICATIONS IN STATISTICS. SIMULATION AND COMPUTATION. - ISSN 0361-0918. - 52:12(2023), pp. 6235-6248. [10.1080/03610918.2021.2011921]
File allegati a questo prodotto
File Dimensione Formato  
De Santis_Confidence-intervals_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1600951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact