GrailQuest (Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution (≤ 100 nanoseconds) each with effective area ∼ 100 cm 2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, and an incremental long-term plan to increase the number of detectors and their performance; this will result in a living observatory for next-generation, space-based astronomical facilities. GrailQuest is conceived as an all-sky monitor for fast localisation of high signal-to-noise ratio transients in the X-/gamma-ray band, e.g. the elusive electromagnetic counterparts of gravitational wave events. Robust temporal triangulation techniques will allow unprecedented localisation capabilities, in the keV-MeV band, of a few arcseconds or below, depending on the temporal structure of the transient event. The ambitious ultimate goal of this mission is to perform the first experiment, in quantum gravity, to directly probe space-time structure down to the minuscule Planck scale, by constraining or measuring a first-order dispersion relation for light in vacuo. This is obtained by detecting delays between photons of different energies in the prompt emission of Gamma-Ray Bursts.

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena / Burderi, L.; Sanna, A.; Di Salvo, T.; Amati, L.; Amelino-Camelia, G.; Branchesi, M.; Capozziello, S.; Coccia, E.; Colpi, M.; Costa, E.; D'Amico, N.; De Bernardis, P.; De Laurentis, M.; Valle, M. D.; Falcke, H.; Feroci, M.; Fiore, F.; Frontera, F.; Gambino, A. F.; Ghisellini, G.; Hurley, K. C.; Iaria, R.; Kataria, D.; Labanti, C.; Lodato, G.; Negri, B.; Papitto, A.; Piran, T.; Riggio, A.; Rovelli, C.; Santangelo, A.; Vidotto, F.; Zane, S.. - In: EXPERIMENTAL ASTRONOMY. - ISSN 0922-6435. - 51:3(2021), pp. 1255-1297. [10.1007/s10686-021-09745-5]

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena

De Bernardis P.;
2021

Abstract

GrailQuest (Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution (≤ 100 nanoseconds) each with effective area ∼ 100 cm 2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, and an incremental long-term plan to increase the number of detectors and their performance; this will result in a living observatory for next-generation, space-based astronomical facilities. GrailQuest is conceived as an all-sky monitor for fast localisation of high signal-to-noise ratio transients in the X-/gamma-ray band, e.g. the elusive electromagnetic counterparts of gravitational wave events. Robust temporal triangulation techniques will allow unprecedented localisation capabilities, in the keV-MeV band, of a few arcseconds or below, depending on the temporal structure of the transient event. The ambitious ultimate goal of this mission is to perform the first experiment, in quantum gravity, to directly probe space-time structure down to the minuscule Planck scale, by constraining or measuring a first-order dispersion relation for light in vacuo. This is obtained by detecting delays between photons of different energies in the prompt emission of Gamma-Ray Bursts.
2021
All-sky monitor; Constellation of satellites; Gamma-Ray Bursts; Quantum gravity; γ-ray sources
01 Pubblicazione su rivista::01a Articolo in rivista
GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena / Burderi, L.; Sanna, A.; Di Salvo, T.; Amati, L.; Amelino-Camelia, G.; Branchesi, M.; Capozziello, S.; Coccia, E.; Colpi, M.; Costa, E.; D'Amico, N.; De Bernardis, P.; De Laurentis, M.; Valle, M. D.; Falcke, H.; Feroci, M.; Fiore, F.; Frontera, F.; Gambino, A. F.; Ghisellini, G.; Hurley, K. C.; Iaria, R.; Kataria, D.; Labanti, C.; Lodato, G.; Negri, B.; Papitto, A.; Piran, T.; Riggio, A.; Rovelli, C.; Santangelo, A.; Vidotto, F.; Zane, S.. - In: EXPERIMENTAL ASTRONOMY. - ISSN 0922-6435. - 51:3(2021), pp. 1255-1297. [10.1007/s10686-021-09745-5]
File allegati a questo prodotto
File Dimensione Formato  
Burderi_GrailQuest_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1600506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact