We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small and high dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools.
Directional quantile classifiers / Farcomeni, Alessio; Geraci, Marco; Viroli, Cinzia. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - (2022), pp. 1-28. [10.1080/10618600.2021.2021209]
Directional quantile classifiers
Farcomeni, Alessio;Geraci, Marco;
2022
Abstract
We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small and high dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools.File | Dimensione | Formato | |
---|---|---|---|
Geraci_preprint_2022.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
636.73 kB
Formato
Adobe PDF
|
636.73 kB | Adobe PDF | |
Geraxci_Journalofcomputational_2022.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
579.02 kB
Formato
Adobe PDF
|
579.02 kB | Adobe PDF | Contatta l'autore |
Geraci_Directional-quantile_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.