We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small and high dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools.

Directional quantile classifiers / Farcomeni, Alessio; Geraci, Marco; Viroli, Cinzia. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - (2022), pp. 1-28. [10.1080/10618600.2021.2021209]

Directional quantile classifiers

Farcomeni, Alessio;Geraci, Marco;
2022

Abstract

We introduce classifiers based on directional quantiles. We derive theoretical results for selecting optimal quantile levels given a direction, and, conversely, an optimal direction given a quantile level. We also show that the probability of correct classification of the proposed classifier converges to one if population distributions differ by at most a location shift and if the number of directions is allowed to diverge at the same rate of the problem’s dimension. We illustrate the satisfactory performance of our proposed classifiers in both small and high dimensional settings via a simulation study and a real data example. The code implementing the proposed methods is publicly available in the R package Qtools.
File allegati a questo prodotto
File Dimensione Formato  
Geraci_preprint_2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 636.73 kB
Formato Adobe PDF
636.73 kB Adobe PDF Visualizza/Apri PDF
Geraxci_Journalofcomputational_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 579.02 kB
Formato Adobe PDF
579.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Geraci_Directional-quantile_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.2 MB
Formato Adobe PDF
4.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1600289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact