In recent years, small-scale drones have been used in heterogeneous tasks, such as border control, precision agriculture, and search and rescue. This is mainly due to their small size that allows for easy deployment, their low cost, and their increasing computing capability. The latter aspect allows for researchers and industries to develop complex machine-and deep-learning algorithms for several challenging tasks, such as object classification, object detection, and segmentation. Focusing on segmentation, this paper proposes a novel deep-learning model for semantic segmentation. The model follows a fully convolutional multistream approach to perform segmentation on different image scales. Several streams perform convolutions by exploiting kernels of different sizes, making segmentation tasks robust to flight altitude changes. Extensive experiments were performed on the UAV Mosaicking and Change Detection (UMCD) dataset, highlighting the effectiveness of the proposed method.

MAGI: Multistream aerial segmentation of ground images with small-scale drones / Avola, D.; Pannone, D.. - In: DRONES. - ISSN 2504-446X. - 5:4(2021), p. 111. [10.3390/drones5040111]

MAGI: Multistream aerial segmentation of ground images with small-scale drones

Avola D.;Pannone D.
2021

Abstract

In recent years, small-scale drones have been used in heterogeneous tasks, such as border control, precision agriculture, and search and rescue. This is mainly due to their small size that allows for easy deployment, their low cost, and their increasing computing capability. The latter aspect allows for researchers and industries to develop complex machine-and deep-learning algorithms for several challenging tasks, such as object classification, object detection, and segmentation. Focusing on segmentation, this paper proposes a novel deep-learning model for semantic segmentation. The model follows a fully convolutional multistream approach to perform segmentation on different image scales. Several streams perform convolutions by exploiting kernels of different sizes, making segmentation tasks robust to flight altitude changes. Extensive experiments were performed on the UAV Mosaicking and Change Detection (UMCD) dataset, highlighting the effectiveness of the proposed method.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1599993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact